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Any mathematical consideration must 
be founded on the notion of ‘allness’ 
or ‘quantification’ as a basic category 
of logic which cannot be subject to 
further analysis whatsoever. 

(Ernst Zermelo) 

 

What surpasses all that is finite and 
transfinite is no “Genus”; it is the 
single, completely individual unity in 
which everything is included, which 
includes the “Absolute”, incomprehen-
sible to the human understanding. 

(Georg Cantor) 
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INTRODUCTION 

 

This essay discusses the fate of universality and a universal set in several 
set theories. It presupposes a general background in logic and general 
knowledge of set theoretic basics. Even basic points are repeated if the 
context of discussion profits from a short reminder, but no systematic 
survey of the different systems is attempted. The book aims at a 
philosophical study of ontological and conceptual questions around set 
theory. A formal exposition of some consistent set theories with a universal 
set and related theorems can be found in (Forster 1992) and the sources 
mentioned there. A comprehensive formal exposition of paraconsistent set 
theories does not yet exist; some sources are mentioned in chapter V. 

 

Set theories are ontologies. They posit entities and claim that these exhibit 
some essential properties laid down in the set theoretical axioms. Like 
Zermelo (in the opening paragraphs of Zermelo 1908) Fraenkel, in his early 
introduction to set theory (1919/19282) explicitly outlines this axiomatic 
approach: 

According to the essence of this method we refrain to define the concept of 
set or to analyze it, we rather start with some axioms in which the concept 
of set like the relation ‘to be contained as an element’ occurs, and in which 
the existence of some sets is postulated. The concept of set is implicitly 
established by the totality of these axioms. 

 

Collecting these postulated entities poses the problem of universality. Is the 
collection of the set theoretical entities itself a set theoretical entity? What 
does it mean if it is, and what does it mean if it is not? To answer these 
questions involves developing a theory of the universal set. For a start we 
may define the universal set as U = {x | x = x}.1  As set theories extend first 
order logic with identity (FOL) or some variant of it (in a non-standard 
logic) they contain the axiom: (�x)(x = x). U thus comprises the whole 
domain of the language. Tautologically whatever exists exists. So, 
supposedly, there are all existents. Why not continue: So there is the 
totality of these existents? Why shouldn’t they be collectible? After all, set 
theoretical quantification runs over all sets, doesn’t it? If, however, that 
totality was an additional entity we could collect another totality including 
it – and so forth, it seems. Unless this totality possessed a nature sui 
generis, setting it apart from ordinary things and sets. 

                                                
1  Standard symbols are used. See the appendix on notation.  
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Some of the set theories are pure set theories: their domain consists entirely 
of sets, all variables range over sets. Some of the theories contain proper 
classes in addition to sets (improper classes). Some theories contain 
additional ‘urelements’ (i.e. objects which are neither sets nor classes, but 
something to be collected into sets or classes). Some other theories use 
numbers as basic entities, not reduced to set theoretic construction. The 
discussion here will mention these differences, but will not use a neutral 
formalization, which applies to all theories; this would require using one 
type of variables and sortal predicates like “set”, “ordinal” etc. to restrict 
quantification to the appropriate type, e.g. “(∀x,y)(Set(x)∧Set(y) ⊃ …”. 
The drawback of this formalization would be its contrast to the respective 
textbooks and articles. Additionally it would be very cumbersome, e.g. 
having all the sethood statements in pure set theories like Z, the 
axiomatization of which would include now a new axiom “(∀x)Set(x)”,  
which had to be used all over to get rid of the sethood requirements in the 
antecedents of statements. Thus when discussing mixed type systems sortal 
predicates may be used, but not with pure set theories, and not with systems 
which only distinguish sets from (proper) classes; in the latter case lower 
case variables refer to sets, upper case variables to (proper) classes. 

The existence of urelements is important for the broader ontological picture 
[cf. Chap. VI], but the presence or absence of a basic set of urelements does 
not change the treatment of universality in many set theories (like ZFC). 
One may ask oneself what sort of things might be chosen as urelements. If 
physical entities are chosen, there are – in the light of our best physical 
theories – only finitely many of them, which can be collected into a set of 
urelements. Physical objects may have their own principles of composition 
(like mereology). Their presence does not influence the question whether 
all sets can be collected into a universal set. Once sets are present, there 
seems to be no need for further elementary logical (abstract) entities like 
numbers. A collection of urelements that matches the sets in cardinality 
seems highly dubious, as one may suppose every urelements to have a 
singleton and any two of them to be elements of their pair set – etc. In some 
cases (like Specker’s Theorem [in Chap. IV]) we have to talk about 
urelements.  

 

Several issues related to set theory will not be discussed here: We are not 
much concerned with the epistemology of mathematics in general or set 
theory in particular. With respect to epistemology all the theories discussed 
here are prima facie in the same boat. We may, however, raise some 
questions concerning whether understanding universality raises additional 
epistemological problems. We start with the ordinary working assumption 
that we have some concepts and ideas of sets and numbers and set theory 
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tries to systematize them. Therefore we will not be concerned with the 
general issue of abstractness or ‘Platonism’ either. Again, prima facie, all 
the theories discussed here are in the same boat. We may raise some 
questions concerning whether some ways of understanding universality or 
the set theoretic universe raise additional ontological problems. 

For the set theoretical anti-realist our study is just a case study in formal 
ontology and its models. Nonetheless some such ontologies might be more 
useful than others even if all are – strictly speaking – false, as there are no 
sets whatsoever. Even if there are no sets some set ontologies may be more 
helpful fictions than others. They help in systematizing mathematics, which 
again, even if without subject matter itself, helps as part of science in 
describing reality. Even Russell held at times that sets are just a manner of 
speaking, but not part of the furniture of the world (cf. Russell 1914). 
Nonetheless as they correspond, for Russell, to the fundamental 
‘propositional functions’ talk about them is neither arbitrary nor idle. One 
theory is singled out as capturing or founding our mathematics.2 

For the set theoretical realist one set theory might be better in capturing set 
theoretical reality than another. Either one has to assume U or one has to 
assume that U does not exist. Our study then is one attempt to ascertain 
which option we have to take. Even if one endorses ‘plenitudinous 
Platonism’ (the thesis that all consistent mathematical theories correspond 
to some part of the realm of abstract entities3) the issue of U is not idle. The 
different set theories might then be taken to deal with different areas of 
abstract entities. In one area there might be something like U in the other 
area not. Nonetheless, one may argue that one of the areas has more right to 
be considered as making up sets as we have an intuitive notion of SET, 
which may be explicated better in one theory than in another. Even if there 
are several areas of abstract entities which are set-like one area may be the 
intended standard model corresponding to our concept of SET. In this 
perspective our study is concerned with the conceptual issue of analysing 
our concept of sets. Comparing the different theories and weighing the 
advantages and disadvantages of incorporating U into a set theory (i.e. the 
gain and the strain of related theorems/facts in relation to our intuitive 

                                                
2  Ironically Russell demanded at that time, of course inspired by the antinomy of the 
set of non self-membered sets, that saying either that a set is a self-member or that it is 
not should be meaningless (not just false). A requirement which excludes the Axiom of 
Foundation. Naturally Russell thought in terms of his theory of types, which by 
definition fulfils this requirement, but, nevertheless, was laying down conceptual 
constraints on a feasible concept of set.  
3  Cf. Balaguer 1998. The view that consistency proves sufficient to take a 
mathematical theory seriously has many variants. These include Hilbert’s formalism 
and fictionalism, a theory of course denying the existence of abstract entities. Included 
is as well Cantor’s ‘theological Platonism’, which has all consistent transfinite entities 
existing as ideas in God’s mind. 
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understanding of sets) we may come to a result whether our intuitive 
concept SET involves the assumption of a universal set or rather some other 
picture. Even if set theory was not of sets in the referential sense (as there 
might be no sets at all) set theory would be of sets in the intensional sense 
of setting out our conceptions of sets. And our question here is whether the 
universal set crucially belongs to these conceptions, or whether it is an idea 
at the periphery of these conceptions, only to be rejected on second 
thoughts about its consequences. 

 
ZF asserts that some collections we have naively thought of as sets (the set 
of ordinals, cardinals, the universal set) are not sets – i.e. they do not exist 
for ZF itself. Most surprising is this claim for U, as {x| x = x} seems so 
natural. That our untutored intuitions have to be partly corrected at the 
foundation of science, however, occurs not just in ZF but – one may well 
argue – at the foundations of physics (e.g. with our untutored intuitions 
about the locality of particles or the properties of time) or in biology (e.g. 
with the changeability of some organisms’ essence/species). Thus the mere 
correction of our prior, untutored understanding of a basic concept does not 
establish in itself that ZF goes wrong. The argument has to concern 
whether this is the best option, what repercussions this step has, and 
whether the resulting concept of sets provides a more coherent (unified and 
comprehensive) understanding of sets. 

 

The antinomies of semantics and set theory have to be treated somehow to 
provide a coherent systematic account of the notions involved. The same 
applies to the presupposed concept UNIVERSALITY in set theory. One can 
well do in large parts without treating these problems. Many a textbook 
works with informal set theory. They miss then, however, a comprehensive 
account of sets. What their success – inter alia (compare similar arguments 
in semantics) – shows is that the problems occur placed within an 
otherwise viable world view or viable procedures in semantics or set 
theory, say some version of semantic realism or of constructive 
representationalism. I, therefore, neglect theories that argue from 
antinomies and universality to some form of mysticism, ineffability, anti-
representationalism, or what not.4 

 

The following issues set the theme for much of the discussion here: 

1. How can one avoid slipping into a ‘theory’ that universality is 
ineffable? 

                                                
4  Patterson (2008) extends his anti-representational program to mathematics. 
Postmodern authors endorse Wittgenstein’s Tractarian mysticism about ineffability. 
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2. Are there different aspects to universality in set theory, which stand 
in conflict to each other? 

3. What aspects of universality are embedded within our concept SET? 

4. May inconsistency be the price to pay to circumvent ineffability? 

and most importantly: 

5. How far can axiomatic ontology take us in postulating our way out 
of the problems around universality? 

 

Chapter I starts with the treatment of universality in standard set theory ZF. 
This raises issue (2): universal comprehension and universal collection 
(into a domain of all sets) seem to be incompatible. The approaches 
considered in chapters II – V raise issue (5) of axiomatic ontology. As 
already in chapter I the spectre of ineffability, issue (1), raises its head. 
Some systems engender their own incompatibilities between aspects of 
universality (like the tension between the universal collection into a domain 
vs. universal possession of a singleton), issue (2) again. And we have to ask 
which of the systems have a claim to be more ‘natural’ or ‘intuitive’ for us, 
issue (3). Chapter I also articulates one picture of universality: the iterative 
hierarchy. Articulating this picture raises issues (1), (3) and (5). Chapters II 
asks whether the problems can be avoided by moving either to Second 
Order Logic (SOL) or to an abstract realm ‘broader’ than the one of set 
theory, category theory for instance. Issue (4) is confronted in chapters V 
and the wider ontological discussion of ‘noneism’ in chapter VI. Chapter 
VI tries to come to grips with the methodological problems around issues 
(3) and (5). 

 

Although this is a systematic study (i.e. not an historical investigation into 
the development of several set theories) sometimes it may be illuminating 
to mention and consider side-remarks made by their foundational authors. 
In these remarks one can at times discern the broader ontological picture 
the author works with.5 

 

 

                                                
5  As this is no detailed historical study I often omit giving the detailed source of a 
side-remark, but refer the interested reader to the comprehensive studies by Ebbinghaus 
(2007) on Zermelo, Dauben (1979) on Cantor, as well as (Lavine 1998). Some remarks 
have entered the set theoretical folklore and can be found in many introductory books 
(e.g. Potter 2004) or (Deiser 2010), which contains many quotes of the founding fathers, 
following the development of set theory. 
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I 

ITERATION, FOUNDATION, AND REFLECTION 

 

ZFC has become in its first order axiomatization the accepted set theoretic 
standard. We take, as usually done, as Z the system containing the Axioms 
of Extensionality, Pairing, Powerset, Sums, Separation and Infinity. ZF 
adds Foundation and Replacement, like Separation an axiom schema. ZFC 
adds the Axiom of Choice.6  ZFC+GCH adds the Generalized Continuum 
Hypothesis to ZFC – and so on for stronger axioms. 

The antinomies (like Russell’s Paradox7) are often taken as showing that 
Naïve Comprehension 

 (NC1)  (�y)(�x)(x∈y ≡ ϕ(x)) 

 (NC2)   (�F)(�y)(�x)(x∈y ≡ F(x)) 

                                                
6  Historically this is misleading as Zermelo included the Axiom of Choice in his 
system, where he used it to prove well-ordering (in 1908). He also has an extra axiom 
for the empty set, ∅, but as in FOL the domain cannot be empty, one does not need this 
axiom, but gets ∅ by separation. In the 1920s Fraenkel and von Neumann and Skolem 
added Replacement. Zermelo’s original system did not contain Foundation, but his 
system of 1930 does. His 1930 system ZF’ leaves out the Axiom of Infinity as he then 
considered it to be an extra-logical existence assumption. Zermelo’s formulation was 
not confined to FOL, but Skolem’s clarification of ‘definite’ property as used in an 
instance of Separation led to first order ZFC. Cantor already stated and used both the 
Axiom of Choice and Replacement. 
7  ‘Antinomy’ will be used for a contradiction provable given some theory and its 
logic. A ‘paradox’ is just a theorem contrary to our expectations and prejudices. Already 
Zermelo stressed the importance of this distinction, as otherwise one sees the likes of 
too many antinomies where there are only paradoxes. Unfortunately usage is not so 
clear nowadays. By the way: The antinomy unfortunately called ‘Russell’s Paradox’ 
was discovered some years earlier by Zermelo. It leads back – as many antinomies – to 
negative self-application of a property/predicate, the idea behind the canonical proof of 
Cantor’s Theorem, which served as the context of discovering ‘Russell’s Paradox’. 
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is wrong. The assumption that every concept/property8 has an extension, 
which is a set, is considered rejected. The first order axiom schema (NC1) 
or the second order axiom (NC2) are sometimes called ‘naïve set theory’. 
They were by no means present in all approaches to set theory introduced 
in the 19th century. Cantor’s original set theory was concerned with 
combinatorial multiplicities. At times, though, he considered sets as ‘united 
by a rule’, which sounds like Comprehension. Comprehension was 
certainly present in the logicist approach to set theory of Frege and Russell. 

Now, take a version of Comprehension: the Russell Set, defined as R = {x | 
x∉x}, and taking ‘x∉x’ as the open formula ϕ(x) or the property F yields 
the famous antinomy: R∈R � R∉R. The defining property of NOT BEING A 
SELF-MEMBER seems to violate the constitutive assumption behind Naïve 
Comprehension by not having an extension, on pains of inconsistency.  

There is another reading of Russell’s Paradox, however. Proceeding to 
Zermelo’s Aussonderungsaxiom (Axiom of Separation)9 or not-naïve 
Comprehension scheme (of set theory Z) 

 (AS)  (�x)(�y)(�w)(w∈y ≡ w∈x � ϕ(x)) 

the property NOT BEING A SELF-MEMBER can be used to derive:  

(NU)  �(�x)(�y)(y∈x) 

                                                
8  In the context of this essay I take “concept” and “property” to be synonymous 
within set theories, as is usually done. In (natural language) semantics concepts may be 
said to refer to properties, which are often not taken as sets. Set theoretic ontology is 
less fine grained. A distinction is made between formulas expressing a concept/property 
and the concept/property. CAPITALIZATION is used to signal a concept/property. 
Reflecting on set theory and its relation to our cognition concepts (like the concept SET) 
are taken in their usual sense as cognitive, and whether they are captured and explicated 
by a theory (say, of ‘sets’) is the matter of debate. 
9  To be precise: It is a schema in the wff ϕ. Any set can be separated by this axiom 
schema which corresponds to a wff in the language of the theory. The constructible 
universe L (used in Gödel’s relative consistency proof for the Axiom of Choice and the 
Continuum Hypothesis) consists only of such sets, which requires restricting the 
powerset operation to constructible subsets. 
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the denial of a universal set.10  What Russell’s Paradox shows on this 
reading is that the assumption of the existence of a universal set is illicit. 
Cantor’s Theorem establishes that the powerset ℘(x) of a set x has a larger 
cardinality than x. Cantor’s classical proof refutes the supposition of a 
bijection ƒ between x and ℘(x) by considering the subset {x| x∉ƒ(x)}. If x 
is the universal set this naturally introduces the Russell Set (being an 
element and a subset of the universal set). The idea of a universal set thus 
stands in tension to a core ingredient of the concept SET: that every set has 
subsets, which should be collectible. “⊆” is as central to set theory as “�”: 
one of them provides a sufficient foundation: 

 (D⊆1) x ⊆ y  (�z)(z�x � z�y) 

 (D�1) x�y  {x} ⊆ y 

The Powerset Axiom focussing on “⊆”, therefore, deserves a special role in 
any set theory, as Comprehension and/or Separation focus on “�”. That 
U�U may seem less unnatural than ℘(U)⊆U and ℘(U)�U.11 

Comprehension is fine as long as we restrict the domain of objects to be 
comprehended. If we assume that there is no universal set or domain even 
Naïve Comprehension need not lead to the antinomies, as one cannot take 
for granted that R (or a similar cause of trouble) belongs to the objects 
(sets) to be comprehended. (AS) provides the safe formalization of this 
idea. The property NOT BEING A SELF-MEMBER can be taken as having an 
extension now that (AS) has been adopted. Any property has an extension 
relative to a base set. And if a is the base set for an instance of (AS) with 
‘x∉x’, the extension of the subset corresponding to NOT BEING A SELF-

                                                
10  Proof (Outline). Assume U exists. Take U as the base set x in (AS). The first 
conjunct on the right side of the biconditional can then be eliminated, being logically 
true. One arrives at the form of (NC1) and the usual reasoning to the Russell Paradox 
goes through. Reject the existence assumption concerning U by arriving at the 
contradiction. � This proof can already be carried out in a weak subsystem of Z, like 
Kripke-Platek set theory KP. Membership can hardly be indeterminate for a set 
theoretic realist. Even if this had some plausibility for some sets, with respect to U 
something is in the universe or is not. Avoiding the Russell Paradox by banning R from 
U leaves us with the mystery where to put R then, or with the option that some 
collections cannot be sets, which leads to a set/non-sets distinction, we will look at in 
chapter II. Indeterminate membership plays no role here; theories without tertium non 
datur will be considered in chapter V, but giving up tertium non datur may mean 
rejecting both R∈R and R∉R. 
11  Even the problem with Frege’s ‘basic law’ (V) goes back to this, since Frege at the 
same time defines extensions as objects (i.e. first order entities) and puts them in basic 
law (V) in correspondence to courses of values (predication) of concepts (i.e. second 
order entities), by Cantor’s Theorem there have to be more extensions of concepts 
(namely sets of objects) than objects (cf. Boolos 1998, pp.135-54). Because of the 
complete absence of a Powerset Axiom we do not consider set theories like KP 
(Kripke/Platek set theory) in detail. 
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MEMBER relative to a is a itself (as by the Foundation Axiom no set is a 
member of itself, so that all members of a satisfy the condition x∉x). 

The discovery behind the set theoretical antinomies then consists not in a 
claim about properties 

 (NNC) Not every property has an extension. 

but in a claim about universality 

 (NU’)  There is no universal set. 

Both claims are ontologically substantial and surprising. Hilbert, for 
instance, thought that conception formation was in trouble, as the idea that 
being able to determine whether something falls under a concept does not 
suffice for the concept’s existence.  

The argument against U works with Separation. Using (NC) leads to the 
antinomy. One reading of the antinomic argument can also be that it uses 
the assumption that the Russell Set R is part of ‘all’ objects (i.e. within the 
range of “�”). The range of “�” on pains of contradiction thus cannot be 
universal, R lying outside of it. Thus there is no unrestricted quantification 
over all collections. If “�” ranges over all sets, R cannot be a set after all. 
The collection of non self-membered sets turns out to be the range of “�” 
in Z because of the Axiom of Foundation (i.e. turns out to be the iterative 
hierarchy V itself)! In this reading of the antinomic argument again a set of 
all sets is excluded. The reasoning poses two problems we come back to 
again and again: (i) (NC) still allows building the forbidden collections U 
and R, and (ii) the reasoning invites our naïve bewilderment where some 
collection is ‘to be’ when outside of the range of “�”. 

The naturalness of the idea of universality or a universal set may be related 
to the Calculus of Classes (cf. e.g. Hilbert/Ackermann 1928, Chap. 2).12 
Textbooks unhesitatingly speak of a ‘universal class’ here. The Calculus of 
Classes systematizes our reasoning with respect to ‘classes’ of arbitrary 
objects by defining cuts, unions etc. The complement of such a ‘class’  is 
an absolute complement , such that � is the ‘universal class’. The 
crucial point is that these ‘classes’ of the Calculus of Classes only contain 
individuals of the considered domain. There are no ‘classes of classes’. The 
‘universal class’ is just the domain considered. The ‘classes’ of the 
Calculus of Classes are neither sets nor classes. They obey some axioms 
(like Extensionality), but others (like Powerset) do not apply here. The 
concept SET exhibits much more complexity than the concept COLLECTION 
OF INDIVIDUALS! 

                                                
12  In the following paragraph “class” is scare-quoted to make clear that these 
collections are not proper classes, but collections of individuals. 
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Given the logical apparatus of Z we can even derive: U = {x | x = x} = ∅, 
even though we have: (�x)(x = x)!13 

There are several reasons why there is no universal set in ZF: 

1. There is no U because this contradicts Cantor’s Theorem (i.e. because 
of the Axiom of Powerset). For U we should have ℘(U) ⊂ U, but this 
contradicts Cantor’s Theorem (as, trivially, a subset has at most the 
cardinality of the superset). [By the way: Hilbert had a similar argument 
working with self-mappings of functions of numbers.] 

2. There is no U because this contradicts the Axiom of Foundation. For U 
we should have U�U against Foundation. 

3. There is no U by the Axiom of Separation, as shown above. 

4. As, because of further antinomies, there cannot be a set of all cardinal 
numbers or of all ordinal numbers – as was already clear to Cantor – 
there can be no U, which had to contain these sets as separable subsets. 

5. There is no U by the Axiom of Pairing in combination with Foundation 
as {U} could be built by Pairing (i.e. U and U again gives {U,U}={U}), 
but {U}�U contradicts Foundation as {U} does not have an element 
that does not share an element with it (as U�U). 

The absence of a universal set yields more consequences in Z, ZF and 
ZFC. In Z, ZF and ZFC absolute complements are missing: since subsets 
are separated relative to a base set the complement to a set x is not the 
collection of all things not in x, but only the collection of those things in the 
base set which are not in x. This follows the spirit of Separation, but 
violates, supposedly, our intuition as to complements. Just as 
Comprehension is restricted in Z so is complement building. There cannot 
be absolute complements as the absolute complement to ∅ had to be U. 

As ZF and ZFC are naturally understood by the iterative hierarchy [cf. 
below] their definition of number cannot be Frege’s. Frege used a flat 
universe and defined a cardinal number as the equivalence class of sets 
with the same equinumerosity – or a representative of that equivalence 

                                                
13  Proof (Outline). If one allows for definition by abstraction in a pure set theory (i.e. 
without atoms, which are not sets) one has to use a scheme like the following:  

{x | ϕ(x)} = y ≡ ((�x)(x∈y ≡ ϕ(x) � (�w)(w = y))�(y = ∅ � �(�w)(�x)(x∈w ≡ ϕ(x))) 
 
Now, for an instance of this scheme with U = {x | x = x}, assume U ≠ ∅, then the 
second disjunct on the right hand side is false. Therefore the first disjunct has to be true. 
This leads to contradiction again, by the proof for (NU). Thus the assumption has to be 
rejected. [In a set theory with atoms the second conjunct in the first disjunct has to be 
the meta-linguistic assumption that y is a set, cf. Suppes 1960, p.34.] 
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class.14  Frege defined equinumerosity by means of bijective functions. 
This cannot be done in ZF as, for instance, there are singletons of any rank 
in the hierarchy, so the supposed set representing 1 had to contain elements 
from any rank, but this is impossible for a set (contradicting the Reflection 
Principle): Sets have a minimal rank, the rank at which all their elements 
are present. A collection of sets of arbitrary high rank cannot be a set, and 
this cannot be or represent a number. 

The idea that there is no universal set seems to go against our logical 
intuitions as we have developed them working with quantificational logics: 
There is always a domain of all objects to be quantified over.  

What then can be the semantics of Z? How are its quantifiers to be 
understood? Although there is no universal set, there is universal 
quantification in Z. The axioms witness this. The Axiom of Separation, for 
instance, says of all sets that for any condition the corresponding subset 
exists. In terms of the iterative hierarchy [cf. below] the axiom talks about 
sets of any rank. 

One issue should be made clear at the very beginning: The metaphors 
usually employed when setting out ‘the construction’ of some sets, say of 
the transfinite ordinals, should not be taken literally as involving some 
temporal procession of arriving at ever larger ordinals, ranks or 
cardinalities. As sets are abstract entities they do not depend in their 
existence on any one – not even God – counting up to them. Sets are simple 
there. All of them are there. The metaphors of construction merely serve to 
express the structures the sets employ, and may serve, sometimes, as 
didactic devices how we come to understand some set on the basis of 
another collection of sets. Thus, that there is no highest rank in ZFC should 
not be misunderstood as the set theoretic hierarchy V being under 
construction. All sets are there, thus V is there. For this ontological thesis 
and corresponding universal quantification it is irrelevant whether we have 
epistemic means to distinguish that totality from any incredibly large, but 
not total collection/set. 

Like FOL, which does not count its domain to be one of the objects to be 
quantified over, Z itself need not talk about its domain. A stronger meta-
language may be used to model the semantics of Z, typically a second 
order logic (SOL) talking about proper classes, one of which may be the 
domain of Z. We come back to this later.15  But suppose there to be such a 

                                                
14  In fact, in Frege’s consistent system behind the Grundlagen der Arithmetik the 
concept BEING-IDENTICAL-TO-ONESELF should have an extension, and thus a number: 
the number of all things! The system can, however, not tell us what number this is (cf. 
Boolos 1987). 
15  I use “set” to talk about sets and “class” to talk about proper classes (so called 
because these classes either are not sets or have no corresponding set, both usages are 
common, we come back to the idea of ‘correspondence’ below). “Set” and “class” are 
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model for Z. What should the domain of it be called? It certainly looks like 
a universal set, as it comprises all sets. Then Z cannot be complete, since it 
does not deal with all collections of objects/sets. But wasn’t it supposed to 
be complete in its application? V has to be a collection of sets, and can be 
no set itself in Z. Zermelo (cf. 1908) recognized this and concluded from 
the reasoning about the Russell Set that the domain of set theory ‘is not 
itself a set’. There seem to be totalities beyond sets then. 

 

* 

 

The standard picture of the realm of sets accompanying ZF and ZFC is, at 
least nowadays, the iterative or cumulative hierarchy. It can be argued that 
Cantor had already a conception of sets congenial to this picture, because 
Cantor thought of sets as build by the iterative application of set building 
functions. Frege’s set theoretic universe, in contrast, has to be conceived as 
flat (non hierarchic). The hierarchy was clearly developed by von Neumann 
(1929), wherefore it is sometimes called “von Neumann hierarchy”. 
Zermelo developed a similar picture in the late 1920s. The Axiom of 
Foundation and the Axiom of Replacement determine this picture. 
Foundation expresses the idea that a set occurs at some earliest level in the 
hierarchy (as sets are build/defined by iteration of set building operations 
there is some – though possibly transfinite – number of preceding set 
building operations). As mentioned before, talk of ‘building’ sets should 
not be taken as a process of construction, but only as an easy way to 
express structural dependencies between sets all being already there. The 
Axiom of Replacement expresses the continuation of ever higher levels 
(e.g. by collection a transfinite sequence of iterations of applying the 
powerset operator into a single set). 

In the pure version of the hierarchy the starting level (or ‘rank’) V0 is ∅, 
then there are two ways of proceeding to higher ranks 

Vα+1 = ℘(Vα)   for successor ordinals α 

Vδ = ∪{Vα | α < δ}   for limit ordinals δ 

the set theoretic universe V can then be seen as a hierarchy where later sets 
depend on preceding sets (although, of course, not in a temporal manner). 
The hierarchy is iterative as the two hierarchy building operations are 
applied over and over again. The hierarchy is cumulative as the sets present 

                                                                                                                                                   
thus not taken as synonymous here. All claims and theories referred to are adapted to 
this usage; formalisms/symbols are also rendered into the common format used here. 
Following ordinary usage equivalence sets are called “equivalence classes” although 
they are no classes. 
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at Vα are also present at all levels Vδ with α < δ.16  Each set has some 
earliest rank of occurrence. All ranks are transitive sets (i.e. contain all 
members of members of members…). The strength of the operation of 
collecting the powerset provides the plenty of the next stage. Reflections 
about how strong the idea of a powerset is concern directly the issue of the 
Generalized Continuum Hypothesis (GCH). 

The picture is slightly different in a set theory with urelements. The set of 
urelements M lays at the foundation of the hierarchy V0 = M. The two ways 
of proceeding are accompanied by the requirement that for each Vα, M ⊆ 
Vα. A corresponding set theory needs to distinguish sets from non-sets and 
is called ZFU or ZFCU.17 

                                                
16  Remember that ∅ ⊆ Vα for any Vα as Vα is a set. Thus at Vα+1 ∅ and {∅} are 
present and thus each stage contains all preceding stages. 
17  Usually the system is called ZFU, with U being the set of urelements. The name 
“ZFU” may thus confuse in the context of our investigation into the existence of the 
universal set U. Nonetheless we stick with the usual name “ZFU” as urelements and 
thus ZFU and ZFCU play no vital role in this book. For us it is important to distinguish 
the set of all sets U from the class of all sets V, so we need the name “U” in addition to 
“V”. 
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Thus one can picture V as either a pure hierarchy of ZF, ZFC (upper part 
in the picture) or a hierarchy based in domain of non-sets (lower part).  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZFU has a broader base than ZF. The dots before Vω indicate that Vω is the 
first limit level (of transfinitely many). 

Z takes us with the Axiom of Inifinity to Vω, but not to arbitrary high ranks 
in V. We need ZF (i.e. Replacement) to go further. By Replacement we 
know that the function in n for n�ω which takes as value the n-time 
powerset of ω has as range a set, since ω is a set (by the Axiom of Infinity). 
Therefore (by the Axiom of Union) the union of all these powersets exists 
as a set, and thus as a next rank in V. Now we can move in ZF beyond 
Vω+ω. Note also that in this rank all other ZF-axioms are satisfied, while – 
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by Foundation – the rank is not a member of itself, which establishes the 
independence of Replacement from the other ZF-axioms.18 

Up to Vω we find in pure set theory the hereditarily finite sets. They fit 
naturally to defining the ordinals in von Neumann’s way: n+1  n � {n} 
and take ∅ as 0. Then in Vω a transitive set of transitive sets is a number. 
We get: n�Vn+1, n∉Vn, Vn�Vn+1, Vn⊆Vn+1. Ranks and numbers thus are �-
ordered. The hereditarily finite sets fulfil the axioms of ZFC save the 
Axiom of Infinity, although the Axiom of Choice and the Axiom of 
Replacement become unimportant here: The Axiom of Infinity is thus 
independent from the other ZFC-axioms. The finite system is sometimes 
called: ZFC-∞. In fact one could add an Axiom of Finiteness here:  

�(�x)(∅≠x � (�y)(y�x �	y�{y}�x)) 

Obviously the Axiom of Finiteness is true up to Vω, i.e. for all hereditarily 
finite sets. And equally obviously Vω (i.e. the domain of that theory) is not 
finite. We meet the same situation as with Quine’s basic finite arithmetic 
[in chapter III]. Even ZFC-∞ can do what Peano Arithmetic, PA, does: 
prove theorems concerning representability and provability (e.g. Tarski’s 
and Gödel’s theorems.19  Note that the hereditarily finite sets provide an 
intended model for ZFC-∞ (i.e. in contrast to other unintended countable 
models for ZFC). Note also – and this may be thought to be important – 
that Naïve Comprehension causes no trouble within the hereditarily finite 
sets. The Russell Set, for instance, does not exist up to Vω as it contains all 
hereditarily finite sets, since they satisfy Foundation, and thus is infinite. If 
the set of urelements is finite as well – as one may expect in a finite 
physical universe – this finite consistency of Naïve Comprehension may be 
the background of our intuitive support of Naïve Comprehension. Let us 
note this as a theorem (“y” not occurring in ϕ as always): 

(FNC) |{x|ϕ(x)}| < ℵ0 � (�y)(�x)(x�y ≡ ϕ(x)) 

                                                
18  Remember not to confuse the indices of ranks above Vω with theses about the 
cardinality of the rank itself, the order type of its largest member or the index number 
occurring for the first time at that rank. ω+1 (i.e. {2,3,4,…1}), ω+2, ω+3 etc. are, 
because they are order types (i.e. relational) subsets of ω×ω, thus countable, thus sets of 
ordered pairs (i.e. given the usual definition of ordered pairs, sets of sets of sets of 
natural numbers) being subsets of Vω+2, members of Vω+3. These ranks have cardinality 
ℵ2, ℵ3 respectively and contain many, many ordinals. � under the usual construction 
(as a set of sets of sets of natural numbers) is a subset of Vω+2, member of Vω+3. � is 
uncountable, whether it has a order-type (not just a simple ordering, but a well-ordering) 
is not obvious and is ensured only by ZFC, not ZF.  
19  Cf. Fitting 2007. The Peano/Dedekind-Axioms for the successor function and 
induction follow easily in Z from the Axiom of Infinity. Taking natural numbers as von 
Neumann ordinals makes obvious that 0 is no successor and that the successor relation 
is functional. Induction follows since an inductive property is inherited by the successor 
relation, thus contains ω. 
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Let us leave ZFC-∞ behind and look at all ranks in V. With a little pretense 
we can say: In the iterative hierarchy exists at some rank any proper subset 
of V, i.e. (a) pretending for the moment that the non-set V has subsets and 
(b) speaking only about collections that can be sets (excluding a set of 
ordinals etc.). We can approximate Naïve Comprehension up to an 
arbitrary rank: y = {x | ϕ(x)} exists for any ϕ as long as the rank of y < α 
for some ordinal α. The set y exists then somewhere below α. We can say 
in general: If a set x exists x has some rank.20  Existential statements are, if 
true, true in parts of V. The Principle of Reflection correspondingly claims 
that if a general sentence or a finite collection of sentences in the language 
of ZFC is set theoretically true, there is a least rank Vα which can serve as 
its model (with variables in the sentences bounded to rank Vα).21  One 
might expect that as all specific sets mentioned in a sentence have a rank. 
Limit ranks ensure this structure. Once again – as with Naïve 
Comprehension – we seem to approximate talk of all sets! The Reflection 
Principle is equivalent to the Axiom of Replacement.22  So the fully 
developed picture of the iterative hierarchy established by Replacement 
approximates universal set theoretic talk. Unfortunately this would be too 
good to be true.  

On the one hand we approximate universal set theoretic talk. And not just – 
one may claim (as Kreisel 1967 did) – set theoretic talk: Set theory can be 
considered to be our strongest formal system, the system to be used in the 
meta-theory of all other systems. Then: If some claim in some informal 
system is intuitively valid and can be captured in some formal system it has 
a set theoretical model. Kreisel’s Thesis so states: Whatever is valid is valid 

                                                
20  Proof (Outline). If x existed without a minimal rank at which it exists, x would 
contain all ordinals as a subset, which is impossible. 
21  This does, of course, not hold for an infinite collection of sentences as all infinitely 
many instances of the schema of Replacement enforce V. The Principle of Reflection is 
another reason why ZFC cannot be finitely axiomatized: If ZFC could be finitely 
axiomatized, then it would establish – by the Principle of Reflection – a model of itself, 
thereby establishing its own consistency, contradicting Gödel’s Second Incompleteness 
Theorem.  
22  Proof (Outline). The Reflection Principle entails Replacement, since if the 
antecedent of Replacement is true, there has to be a rank Vα modelling it; the set 
postulated as existing in the consequent of Replacement will be a subset of that 
modelling rank Vα. Replacement entails each instance of the Reflection Principle in 
going through the quantifiers of the finitely long compound (∀x)ϕ(x) taking the lowest 
possible rank of satisfying instances (which have to be there to make ϕ(x) true) and 
uniting them and their dependencies (by a Replacement function) into a highest most 
comprehensive rank, which thus models (∀x)ϕ(x). � Omitting the Replacement schema 
and restricting separation to formula ϕ with quantifiers bounded to some set provides a 
further weakened theory Z- (also known as ‘MacLane Set Theory’), which nonetheless 
proves sufficient for most of mathematics. 
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in a set theoretical model, and if – as we may suppose – finitely many 
sentences were used in that piece of reasoning, it is valid at some rank Vα. 

On the other hand, however, we, obviously, shift the domain of reference 
from V to some rank Vα. So a universal statement (say, the Axiom of 
Pairing) does no longer talk of all sets, but only of those up to Vα. Seen in 
this light the Principle of Reflection resembles the Löwenheim/Skolem-
Theorem in allowing for non-standard or unintended models of universally 
quantified set theoretic sentences. As Vα can be arbitrary high one may see 
this as less concerning than the countable models ensured by the 
Löwenheim/Skolem-Theorem. If Vα is a sufficiently high transfinite rank we 
approximate universal talk. We can also understand the possible shift of 
domain of reference as underlining the insight that universal set theoretic 
talk is bound to strong axioms like Replacement.  

The universe V is not reached by any ladder (‘construction principle’) used 
within it. It is as strongly inaccessible by such steps as it can be. Otherwise 
we only have a temporary halting point Vα. V is no number, is no set, no 
union or power of sets. V can only be thought as sui generis. How do we 
know this? Because otherwise it could be superseded in one of the usual 
ways. We thus have a transcendental argument concerning V’s nature: it 
cannot be otherwise, since otherwise it wouldn’t be. 

Without the Axiom of Foundation or endorsing an Anti-Foundation Axiom 
the realm of sets is larger containing with the unfounded sets more 
collection like entities. Where are these collections collected in? U seems a 
good candidate for an collection of unfounded collections as U�U itself. 
But unfortunately Z forbids U. Are unfounded collections sets? Or does our 
concept SET entail that sets are grounded collections? In this case we had 
the problem that on the one hand we had to endorse the Axiom of 
Foundation, but this excludes U from our set theory. If sets are abstract 
entities nothing seems to exclude that they contain themselves as all spatial 
images are inappropriate. Picturing non-wellfounded sets by graphs (cf. 
Aczel 1988) shows easily membership bending back to its origin. Anti-
foundationalist set theories contradict our concept of set, however, if set 
identity becomes more than identity of membership (cf. Aczel 1988, 
chap.4). The iterative hierarchy motivates our picture of sets as well-
founded by stressing the idea of ontological structural dependence between 
a set and its members. In this light a set containing only itself, x ={x}, 
seems unnatural. U, in contrast, contains besides all other things itself. We 
might recognize U as a set sui generis and allow for U what we do not 
allow for other sets. Foundation would make an exception for U. But the 
exceptions would not end here as U, being subject to the others axioms if 
still a set, is exceptional – even inconsistent – with respect to Cantor’s 
Theorem, for instance. Foundation certainly is built in the iterative 
hierarchy and V does not pose the problems with respect to Foundation that 
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U does. According to the story of the iterative hierarchy, unfounded sets do 
not exist. The Axiom of Foundation follows from the set up of the 
cumulative hierarchy. The two conditions to proceed to higher ranks ensure 
the axioms of Pairing, Sums, Powerset and Infinity. Coupled with the idea 
of sets being extensional the structural properties of the iterative hierarchy 
thus entail the ZF axioms (cf. also Boolos 1989). 

There are – besides the question of an Anti-Foundation Axiom – 
incompatible set theoretic axioms (like the Axiom of Choice vs. the Axiom 
of Determinacy23), which shows that there are related realms of set-like 
entities (sharing the basic axioms), but which cannot be consistently united. 
There might be a unified inconsistent realm of all these sets [cf. Chap. V]. 
Even the incompatibility need not show that our concept of set is not 
settled. One of the set theories may be thought to be more natural. Even a 
concept SET settled in its basic aspects (like set separation and powerset 
existence) may leave some questions unsettled. The (Generalized) 
Continuum Hypothesis is the best known example. The simple Continuum 
Hypothesis [�(�x)(ℵ0 < |x| < 2ℵo)] is even independent of the Axiom of 
Choice.24 

V has sets of arbitrary high rank. V itself does not occur in the hierarchy 
itself. V taken as the proper class of all ranks in V is a model of ZF. If V 
exists ZF is consistent, as V satisfies all its axioms. Large cardinals 
(strongly inaccessible cardinals beyond the reach of any set building 

                                                
23  Cf. Jech 2003, pp.627-43. The Axiom of Determinacy in so-called ‘Descriptive Set 
Theory’ contradicts the Axiom of Choice, what one may take to be bad enough. It also 
entails some strange results for large cardinalities (like ℵ1, ℵ2 being measurable 
cardinals, but ℵ3 … not being measurable). ZFC seems closer to our conception of sets 
in this regard. 
24  Proof (Outline). Alephs are defined as infinite well-orderable cardinals. The Axiom 
of Choice is equivalent to the statement that any infinite cardinal is an aleph (as it 
implies the Well-Order Principle). Negating the Axiom of Choice (and thus the Well-
Order Principle) one may endorse the simple Continuum Hypothesis but maintain 2ℵo ≠ 
ℵ1, since one may now deny that the Continuum can be well-ordered, whereas the 
combination with the Axiom of Choice entails 2ℵo = ℵ1, since the Axiom of Choice 
entails that any infinite initial ordinal is an aleph. �  
Cantor proved in 1883 that there is no cardinality between the cardinality of the 
collection of finite ordinals (ℵ0) and the cardinality of the collection of all countable 
well-orderings of ω, that cardinality thus being the next well-orderable cardinality: ℵ1. 
Given the Continuum Hypothesis 2ℵo is the cardinality of all countable linear orderings 
of ω. Given the Well-Order Principle thus ℵ1=2ℵo.  
The Generalized Continuum Hypothesis (GCH) entails the Axiom of Choice: Using the 
first aleph GCH claims for all infinite cardinals x = 2y+ℵo. x = 2y+ℵo entails x being an 
aleph, which makes y an aleph. The GCH thus excludes that there are cardinals in 
between well-orderable cardinals (i.e. in between well-orderable sets), so that via its 
respective cardinal number any set can be well-ordered. � (On arguments and intuitions 
around CH and GCH cf. Potter 2004, pp.266-82; Maddy 1988, §2.) 



ITERATION, FOUNDATION, AND REFLECTION 

 26  

operation by being uncountable, regular and greater than 2δ for any 
preceding cardinal δ), if existing, are such models as well. For V the 
axioms of ZF are construction principles and thus trivially satisfied. For 
(strongly) inaccessible cardinals the important observation is that they are 
assumed to be just larger transitive sets. Take the least such cardinal; any 
function within it is of lower rank as the cardinal itself; thus the range of 
the function is a set, which has this least inaccessible cardinal satisfy the 
Axiom of Replacement – the other axioms are obviously satisfied again (cf. 
Jech 2003, pp.165-67). 

Having all subsets of a rank present at the next rank suits the Axiom of 
Choice: If a family of non empty sets x exists at some rank Vα, the 
members y of that family exist already at lower ranks Vδ with δ<α, and 
their members z exist already at lower ranks Vγ with γ<δ (relative to a δ for 
some y); thus as these z are elements of some Vγ a set w containing one of 
them for each y�x exists (at the latest) at the rank Vα of x. Choice is 
natural in the iterative hierarchy. V rather corresponds to ZFC. 

Once we have one of the inaccessible cardinals or the class V of all sets we 
have a model of ZF and could be content with respect to our theory of sets. 
So should we care about their nature? 

 

Leaving V to the side for a moment let us consider large cardinals. We 
have just talked about them, so we know something about their nature and 
we can ascribe properties to them. So they should be the objects of some 
theory. 

Zermelo thought of strongly inaccessible cardinals (his ‘Grenzzahlen’) 
forming themselves an unbounded sequence. This, however, implies that 
we quantify over them, and are again in the situation of asking over what 
domain now our quantifiers run. Is this collection of Grenzzahlen itself 
some Grenzzahl? Supposedly not to avoid antinomies of the Burali-Forti-
type. Then again if we now introduce Super-Grenzzahlen we can start all 
over again with them – and once more the whole process iterates. Zermelo 
thought: ‘This series reaches no true completion in its unrestricted advance, 
but possesses only relative stopping-points, …’ (1930, p. 47). 

Now, this way of thinking may be innocent for a constructivist, but for a set 
theoretic realist the idea that sets have to come into existence is simply 
wrong. Placing them at some rank in the hierarchy does not mean that they 
come later (in time?) than the other sets. Frege’s universe is anti-
foundational. And for a Platonist an anti-foundationalist universe has the 
advantage of keeping all ideas of stepwise construction at bay. As all 
abstract objects are there they exhibit some ontological dependencies, but 
this does not require that some are before or beneath others. Impredicativity 
is no problem in such an anti-foundational universe. Zermelo himself 
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rejects any spatiotemporal associations. A well-ordering ‘has nothing at all 
to do with spatiotemporal arrangement’. He also thought the term “choice” 
to be problematic as one may associate (temporally) successive choices 
being performed, where we have only a representational/selectional 
correlation (cf. Ebbinghaus 2007, p.69, 135). The ranks express a structural 
dependency only. All ranks are there. In the same way all of that coming 
beyond the set theoretic ranks (i.e. any large cardinal) is there. Thus there 
should be a collection of it all. Assuming a sequence of large cardinals thus 
does not seem to solve the problem of collecting sets, but either adds the 
issue of an incomplete universe [cf. Chap. VI] or means that V contains 
them all and only our set theory, say ZFC, is not complete yet and has to be 
strengthened by further axioms.  

The issue of large cardinals is independent from that of the universe of sets. 
If one can argue that some idea of some type or large cardinals comes from 
our concept of sets – say, why should ℵ0 be the last inaccessible? – then 
these large cardinals may be thought of as stages in V above those which 
ZFC (so far) treats of. Any type of closure operation on preceding 
collections should correspond to a set within V. This idea resembles the 
content of the Reflection Principle: Any finitely specified closure condition 
can be modelled by some rank. Large cardinals may provide a universe and 
a model for ZFC, but they differ from classes in being collectable 
themselves and thus being members of the overall universe of (extended) 
set theory. Another argument for such additional sets stems from Scott’s 
proof that V≠L given large cardinals, as the notions of (unrestricted) 
powerset and uncountability stand in conflict to V=L. The constructible 
universe seems unnatural, even though V=L entails the Axiom of Choice 
and the Generalized Continuum Hypothesis, excluding it speaks in favour 
of large cardinals. The constructible universe violates the idea of purely 
extensional sets inasmuch as pure extensionality should allow for sets 
beyond any descriptive powers. One might think that it follows the idea of 
Naïve Comprehension, that sets correspond to properties, but why should 
all objective properties correspond to formulas in the first place? 
Proceeding to the next rank by the full powerset operation suits the simple 
idea of the powerset. Curtailing the powerset to subsets which are definable 
leaves out sets that should be there. 

V is the ultimate model of the universe also in the sense that constructions 
like ‘forcing’ or means of building ‘inner models’ start from V (cf. 
Arrigoni 2007; on the formal details cf. Jech 2003, pp.175-223).25 

                                                
25  Leaving here to the side the problem that such models are non-standard or 
unintended, e.g. in being countable; cf. the remarks in the next chapter on limits of 
expressivity. One may add that inner models like L, which restrict the powerset 
operation, but satisfy the others axioms in their standard reading (relative to the 
shrunken universe), are less non-standard than models generated by forcing. 
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The iterative hierarchy does not know several classes. It might be 
preferable not to call V a class, but to treat of V as a very special object in 
its own right – an issue of axiomatic ontology. If we call V a class it is not 
to be thought of in the manner of NBG or MK, since there is no part of set 
theory which addresses it, like Comprehension and Limitation of Size 
address classes in NBG or MK [cf. chap. II below]. V is not in the range of 
set theoretical quantifiers. It is not in the domain. Calling V ‘a class’ in the 
context of the iterative hierarchy and ZFC means there exists only one 
class (outside of our theory of sets).26 

V is the range of the quantifiers in ZFC. Cantor claimed that every 
potential infinite presupposes an actual infinite ‘and cannot be thought 
without it’ (cf. Cantor 1887). This is the Domain Principle: Speaking of 
and quantifying the x presupposes the domain of the x.27 

V is a very special entity, both within the picture of the iterative hierarchy 
as in our meta-theory modelling our theory of sets. V has no subsets as V is 
no set. V is not well-ordered – even in the presence of the Well-Order 
Principle only sets are well-ordered. V is not the domain of a (replacement) 
function, sets are – and so on. V contains all ordinals and all cardinals, but 
there is neither a set of all ordinals nor a set of all cardinals. They cannot be 
established as subsets of V, since V is no set (and thus Separation does not 
apply to it). 

 

For V to be more than a stopping point to be superseded V has to be an 
entity sui generis. This means informally that V is exactly what the picture 
of the iterative hierarchy shows it to be. V is determined, not indefinite, and 
unique. Formally this means 

• that V cannot be an element of whatsoever other collection – on 
pains of re-introducing distinctions of the set/class-type 

• that there are no other entities of V’s type (not a collection of proper 
classes) 

• that V is an entity which can be talked about by its name, without 
including it into a domain of reference. 

                                                
26  At some time Cantor considered distinguishing several ‘absolutely’ large, 
‘inconsistent’ collections (like those of all ordinals or all cardinals). But they play no 
role in a transfinite set theory based on standard logic. Even apart from producing 
antinomies, these collections play no indispensable role in proofs about sets. So Cantor 
came to consider the single absolute, inconsistent totality beyond any further increase. 
27  Cf. Moore 1990, pp. 114-22; Tiles 1989, pp. 95-107. The principle sometimes – 
ignoring Cantor? – is discussed as ‘All-in-one Principle’, going back to (Cartwright 
1994). 
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V is not a standard object of (set theoretic) model theory. The only thing V 
‘does’ is containing all the sets. A universally quantified sentence of pure 
set theory is meaningful as there is an entity which provides all the variable 
values: V. 

 

A unified language has to distinguish urelements, sets and V. Again: V 
cannot be unified with them in a domain. The name “V” refers to V rigidly. 
End of story. 
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II 

LIMITATIONS OF SIZE 

 

The idea of classes already mentioned we may take the universe of Z (and 
other related set theories like ZF, ZFC) to be a class. We have to have 
formal resources then to distinguish classes from sets. Let us use “V” to 
denote the class of all sets (by what ever condition it may be identified, i.e. 
whether by “x = x”, for sets x, or something else). V is universal for sets. 

As “U” was used above to denote a universal set, V ≠ U as long as classes 
and sets are kept apart.  

Von Neumann (1925) introduced a new axiomatization of set theory – 
originally working with functions instead of collections – distinguishing 
proper classes from sets.28  Von Neumann explicitly states the axiomatic 
approach now obligatory in set theory: 

To replace this [naïve notion of set] the axiomatic method is employed; that 
is, one formulates a number of postulates in which, to be sure, the word 
“set” occurs, but without any meaning. Here (in the spirit of the axiomatic 
method) one understands by “set” nothing but an object of which one wants 
to know no more than what follows about it from the postulates. 

 

In NBG classes are distinguished from sets by the Limitation of Size 
Axiom. It says: 

(LSA)  A class is not a set if and only if  

there is a bijection between it and the universal class V. 

The ‘universal class V’ is, again, universal for sets only. Thus there is only 
one size for classes. Some collections are too big to count as sets, therefore 
the name of the axiom. All other improper classes may be either taken as 

                                                
28  The present form of the theory resulted from further development and employment 
by Bernays (1937, cf. 1968) and Gödel (1940) and therefore is called “NBG”. 
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being sets themselves or having a corresponding or representing set (cf. 
Bernays 1968, p.63), which has the same elements as the improper class.29  

Limitation of Size entails the Axiom of Choice: because there cannot be a 
set of ordinals, the collection of ordinals has to be as large as V, which, 
therefore, can be well-ordered. Limitation of Size in itself does not exclude 
a multitude of proper classes. It excludes a multitude of cardinalities 
beyond |V|. 

Limitation of Size by assuming V to be a class works with the idea ‘one 
size fits all (classes)’. All classes have the same size. Even if we grasp the 
idea that some size is too large to be collected into a set, why should we 
stop the idea of oversized collections to continue? Why shouldn’t there be 
some operations or some structure with respect to classes that provide 
super-classes? And if there is some intuitive/conceptual appeal to the idea 
of Limitation of Size, why not stop earlier? Why assume Vω+ω or even Vω 
as sets in the first place? 

Limitations of size are unspecific or open as to which size might be taken 
as limit. Randall Holmes ‘Pocket Set Theory’ (PST) uses ℵ1 as limit (i.e. 
the universe has cardinality ℵ1 and all infinite sets within that universe 
have cardinality ℵ0). So PST has the Continuum Hypothesis built in. PST 
(cf. Holmes 2006, §9.1) has the axioms: Extensionality, (SC*) of MK, 
Existence of ∅ and Singleton {x} for a set x, (unordered) Pairs, Existence 
of Relations (i.e. ordered pairs); the Axiom of Proper Classes, that all 
proper classes have the same size, is the PST version of Limitation of Size; 
the Axiom of Infinity not just degrees an infinite set, but demands all 
infinite sets to be of the same size, ℵ0. The Powerset Axiom is, of course, 
missing: the powerset of an infinite set is a proper class (of cardinality ℵ1), 
no further power can be generated. The Russell Class is a proper class in 
PST as well. And as the ordinals are a proper class the universe of PST can 
be well-ordered (i.e. Choice and Replacement follow as theorems from the 
mentioned axioms, just as in NBG and MK). 

What PST lets us see by all this is that any stopping point in limitations of 
size is arbitrary. PST suffices for a lot of mathematics, and even moving 
upwards a few alephs still has us positing some arbitrary limit, as long as 
the limit is assumed to be of the kind we know from NBG, establishing an 
uncollectible collection of equinumerous collections of a new kind. 

Limitation of Size, thus, seems unnatural. Let us come back to the issue of  
Comprehension. The formal language of NBG and MK uses typically (at 
least) two sorts of variables and constants: one type for sets, the other type 
for classes (and may be other types for atoms…). NBG might be seen as 

                                                
29  As I use “class” for proper classes in distinction to sets, I use “improper class” here 
for collections X that are bound by class variables in NBG, but have a ‘representing’ set 
x such that (∀y)(y∈x ≡ y∈X). 
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further evidence for the thesis that the problem behind the antinomies rests 
not in Comprehension but in universality. Bernays (1937) and Gödel 
(1940) derive within (their syntactic versions of) NBG a Comprehension 
Principle (as a schema in ϕ) for sets: 

 (SC) If ϕ does not contain bound class variables, 

  (�Y)(�x)(x ∈ Y ≡ ϕ(x)) 

This principle of Set Comprehension (SC) collects sets (lower case 
variables) in a proper or improper class (upper case variable) corresponding 
to a defining property ϕ. “x=x” gives us V, “x≠” ∅ etc. The improper 
classes will have a representing set then. Further on, NBG is a conservative 
extension of ZF; in the language of ZF the two systems have the same 
theorems. As NBG is a stronger theory than ZFC one can use it to describe 
a model of ZFC. In a sense we understand what ZFC says and see the 
consistency of ZFC in such a model (given, of course, that NBG itself is 
consistent). As V provides a model of ZFC, showing it to be consistent, an 
extension to Vκ+1 taking V, say, as the first strongly inaccessible cardinal Vκ 

and Vκ+1 = ℘(Vκ) shows NBG to be consistent! The difference ℘(Vκ)\Vκ 
then contains all proper classes. And there are then many, many more 
proper classes than sets. If classes are understood as collected by formulas, 
there cannot be more classes than formulas, there being thus less classes 
than sets. One then has to forsake collecting subclasses, which should exist, 
since there elements exist, into a collection – etc. As classes are supposedly 
larger than sets the whole conception of tying classes to formulas seems to 
add new peculiarities to the old ones. 

NBG thus contains Comprehension as well as universality. Of course NBG 
contains only universality for sets. Universality comes at the prize of 
accepting a new ontological category: (proper) classes. Classes themselves 
are understood inasmuch as one can give the axioms of a theory as class 
axioms and then provide corresponding principles for sets. The main 
drawback, however, is the well known shifting or elevation of the problem 
of universality to classes. We have a class of all sets, but, of course (i.e. on 
pains on versions of the set theoretic antinomies), we have no class of all 
classes. (Often we have not a single class of classes as classes are taken 
only as containers and never as elements.) This is as disturbing as the 
original problem with U, one might think. Certainly classes should obey: 
(�X)(X = X). Therefore there should be a collection of them – what are the 
class quantifications running over, anyway?  

If quantification is throughout being treated extensionally, then to admit 
quantification over classes is to presume that the classes of sets form a 
determinate totality which ought itself to be admitted as a class, a class to 
which all classes of sets belong. (Tiles 1989, p.130) 
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* 

 

Morse/Kelly-Set Theory (MK) differs from NBG in having a unrestricted 
Comprehension Schema (with a class variable X) 

(SC*)  (�X)(�y)(y�X ≡ ϕ(y) 

where in ϕ one may have bound class variables as well as set variables. The 
schema is thus – in distinction to NBG – impredicative. MK and NBG 
share Limitation of Size. NBG does not extend ZFC in the language of 
sets, MK does. The extensions of ZFC brought about by MK can, 
however, also be proven in ZFC+(some large cardinals). Proper classes are 
not needed to deliver new theorems about sets. 

In fact, as there are finitely specific operations to built sets from sets (like 
complements, products, cuts…) NBG can be finitely axiomatized (by 
substituting more specific set building axioms for the schematic (SC), 
which can then shown to be valid) whereas neither MK nor ZFC can be 
finitely axiomatized, because of the schematic character of (SC*) and 
Separation and Replacement (cf. Cohen 1966, pp.73-78; Montague 1961).30 

Both NBG and MK endorse the important existence claims: 

([�])  (�X)(X={<x,y> | x�y} 

([=])  (�X)(X={<x,y> | x = y} 

There is a class representing the membership relation (between sets). This 
suits the idea of having membership (represented by “�”) as the basic 
relation in set theory. The absence of these collections seems as unnatural 
as the absence of U. The collection [=] can stand in for U – as U does not 
exist in NBG or MK, since a set cannot be that large. 

Both theories are two-sorted first order theories having, for instance, non-
intended countable models. 

In their intended interpretation some see in them a solution to our quest for 
U – and/or [�]. The major problem with this view is their unaccounted use 
of the multitude of classes, which are quantified. The realm under 
consideration needs to include both representable classes (and their 
corresponding sets) as well as the proper classes. What is it? V – as 
understood by NBG and MK – is just a member of this domain! 

One may even have classes within classes, as long as Comprehension (SC) 
only applies to sets. In Ackermann set theory (cf. Ackermann 1956) 
classes, therefore, cannot be distinguished from sets by being non-
members. Each class, for instance, has its singleton. 

                                                
30  Of course ‘finitely axiomatized’ always means ‘consistently axiomatized’: any 
system using FOL can be inconsistently finitely axiomatized by the axiom: 
. 
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The notion of set cannot be defined in this theory. Ackermann uses a 
comprehension principle restricted to sets: 

(ASC) (�x)(ϕ(x)�Set(x))�(�y)(�x)(x�y ≡ ϕ(x)) 

As “Set(x)” is a formula we have: 

(1) (�x)(Set(x)�Set(x))�(�y)(�x)(x�y ≡ Set(x)) 

So we have some collection (i.e. a proper class here)31 containing all sets, 
although the notion of set cannot be defined! Ackermann’s set theory with 
respect to the well-founded sets turns out to be equivalent to ZF. It differs 
from NBG in having not all of NBG’s proper classes (e.g. no proper class 
of ordinals, cf. Holmes 2006, §5; Lake 1973). 

If one allows for proper classes, but then proceeds (indefinitely) beyond 
classes, as classes should be collectible themselves (e.g. Blau 2004), one 
should never have made a set/class-distinction in the first place. A stopping 
point in the progression of collections can only be a unique entity of a 
different kind. 

 

We come back to the class/set-distinction in chapter VI. Whatever virtues 
and beauties NBG and MK provide they do not solve our problem of 
universality.  

 

* 

 

The picture and the criticism do not change much, when we turn to Second 
Order Logic (SOL). Zermelo himself always aimed at a categorical 
characterization of sets. In both his systems he used SOL, claiming this to 
be more natural than a first order version of ZFC and in awareness of the 
downward Löwenheim/Skolem-Theorem. FOL is sound and (strongly) 
deduction complete, but SOL allows for categorical models.32  As all 
properties of infinite sets are structural this (identity up to isomorphism) is 
perfectly fine. The second order version of ZFC is ZFC2. Since ZFC2 is 
categorical an ZFC open question like the Continuum Hypothesis is settled 
by the ZFC2 models – if it has any, of course. 

                                                
31  In Ackermann Set Theory there are non-sets. Proof (Outline). Argue indirectly 
starting with one of the antinomies, say the condition “x∉x” and assume “Set(y)” for 
the collection y of sets x∉x, arrive at: ¬Set(y). 
32  Note that the soundness of FOL does not automatically carry over to first order 
ZFC, as FOL is proven sound with respect to set theoretical models/domains. For parts 
of V there are – by the Reflection Principle – models for the restricted axioms (namely 
some higher ranks). V itself cannot be taken as a domain in the fashion of FOL 
soundness proofs. 
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ZFC2 can express the concepts of finitude and infinity: 

(INF) (�ƒ)((�x)(�y)(ƒ(x) = ƒ(y) �	x=y) � (�x)(X(x) � X(ƒ(x))) 
�	(�y)(X(y) � (�x)(X(x) � ƒ(x) ≠ y)) 

is open in “X” (resembling the Axiom of Infinity with “ƒ” denoting the 
successor function). The negation of this sentence expresses finitude (FIN). 

Models of these two sentences (INF) and (FIN) have to be infinite, 
respectively finite; there are no non-standard models or versions of the 
Löwenheim/Skolem-Theorem. 

The Continuum Hypothesis then becomes: 

(CH2) (�X)(INF(X) � X ⊆ ℘(ℵ0) � |X| = ℵ0 � |X| = ℘(ℵ0)) 

This is either true or false in the ZFC2 models. It does not follow from the 
other axioms though. 

ZFC2 is the system consisting of: 

• SOL (extending FOL by rules for introducing and eliminating 
second order quantifiers); identity is not a logical constant “=”, but 
defined, x = y  (�X)(X(x) ≡ X(y)). 

• The ZFC axioms: Extensionality, Foundation, Pairing, Sums, 
Powerset and Infinity. 

• The Axiom of Replacement: (�ƒ)(�x)(�y)(�z)(z�y ≡ (�w)(w�x 
� z = ƒ(w))) 

•  The Axiom (Schema) of Comprehension: (�X)(�y)(X(y) ≡ ϕ(y)) 
[where “X” is not free in ϕ] 

•  The Axiom of Choice: (�X)((�y)(�z)X(y,z) � (�ƒ)(X(y,ƒ(y))) 

Replacement says that the restriction of any function to a set gives a set as 
range. Replacement – as always – allows deriving Separation, the Axiom of 
Comprehension is, of course, much stronger. Replacement is no longer a 
schema, Comprehension is. This system ZFC2 is equivalent to MK [cf. 
(SC*) above]! It has to be strengthened piecemeal to attain a more 
inclusive character (e.g. by adopting CH2) although it will never be 
deduction complete. 

Full blooded SOL is more than two-sorted FOL (with one sort of variables 
for individuals/sets and one for collection of them). In a pure set theory 
ZFC2 takes sets as individuals and all collections of them as values of the 
second order variables (cf. Shapiro 1991). Otherwise, as with FOL, the 
Löwenheim/Skolem-Theorem applies and there are countable models. 
ZFC2 if not just a many sorted first order language quantifies over the 
properties used in first order ZFC. ZFC2 is thus a property theory. 
Comprehension says there is a property corresponding to any (first order) 
open formula in the language, only by an extensional perspective can these 



LIMITATIONS OF SIZE 

 37 

quantifiers be read as referring to classes. The second order variables thus 
are in this extensional perspective not ambiguous: “X(y)” can be read as y 
having either the property or belonging to the class X. One could also 
distinguish within the first order variables between urelements and sets. 
Some of the collections of sets are sets themselves. As in NBG one might 
single our those sets collections which correspond to a (representing) set 
(like in NBG classes can – but need not – correspond to representing sets). 
The domain of the first order variables in ZFC2 has to be the collection of 
all sets, the second order variables ranging over subsets of this domain. If 
one models ZFC2 with a typical meta-theory this meta-theory may be a set 
theory of the kind ZFC+ (e.g. with some axioms postulating large 
cardinals). In case the domain of individuals is taken as the first (strongly) 
inaccessible cardinal δ the second order variables range over the powerset 
of δ, as even inaccessible cardinals are introduced as sets, although larger 
ones.  

There is another interpretation of ZFC2 though. One may take V as the 
range of first order variables (or at least those of the set type). One may 
take subsets of V as the range of second order variables. As V must not be 
taken as a set, there is no need to submit it to the Powerset Axiom. Of 
course the meta-theory in this case will not be modelled in a set theory of 
any strength, but if V is an entity sui generis one may expect so. Set theory 
is the strongest formal system, since we use it or could use it to model other 
formal systems. Therefore we may allow it to be special in describing its 
way of reference and variable binding [cf. Chap. VI for further discussion].  

Plural quantification (as popularized by Boolos 1984, 1985) avoids 
introducing a collection of classes. It thus fares better in adding no new 
riddles than MK-style theories. Plural quantification, however, risk falling 
back to the strength of a two-sorted FOL. More importantly, the issue of V 
cannot be dissolved this way. Even if the uppercase variables (formerly 
known as ‘class variables’) bind individuals together as group without at 
the same time building a new collection – quite a feat, one might think – 
the individuals still come from a presupposed domain: The plural 
quantifiers share the feature of first order quantifiers of picking out objects 
out of that domain. The domain issue does not go away by just 
presupposing the domain or reverting to a stronger meta-theory again. 

 

Turning to SOL so does not solve in itself our problem of universality and 
an unaccounted set/class-distinction. SOL and ZFC2 (e.g. as used by 
Shapiro 1991) are even worse than NBG or MK, because identity is 
defined only for individuals (i.e. sets), as is clear from the definition: x = y 

 (�X)(X(x)≡X(y)). So classes cannot be identified. The background 
theory assumes an extensional understanding of the second order variables 
(equating predication, X(y), with membership, y�X), but extensionality is 
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not expressed within the language. Classes are thus a sort of collections 
different from sets not only in size (as in NBG and MK) but also in 
character. One can add extensionality by the axiom:  

(EXT2) (�X,Y)(X=Y ≡ (�x)(X(x) ≡ Y(x))) 

 

Before we, thus, leave ZFC2 behind we have to consider shortly two 
arguments that we have no other choice in set theory than turning to a 
higher order logic. 

It is sometimes said that to accept a schema presupposes endorsing its 
universal closure (supposedly in a stronger meta-theory). Even if that was 
true – which is not obvious as Hilbert’s use of indefinite expressions may 
show – it would not commit us to SOL in case of ZFC. The quantification 
can concern formulas in the language of ZFC. Transforming ZFC into a 
many-sorted system looks like substituting a second order system (by 
employing a second group of quantifiers) for ZFC, but without full blown 
second order semantics we stay with ZFC; as there are countable many 
formulas there is – in light of the ‘schema’-argument – no need to revert to 
full blown second order semantics. We reach a sort of Henkin-semantics 
for a many-sorted version of ZFC (i.e. with respect to the second order 
variables). 

The argument in favour of higher order and second order logic is, further 
on, often put in terms of expressive power.   

Many concepts are said to be inexpressible in FOL, for instance: FINITUDE, 
WELL-ORDER, UNCOUNTABILITY. There are formula which seem to express 
these concepts, for instance 

|x| < ℵ0 and  |x| ≥ ℵ1 

express that the cardinality of x is less than ℵ0 (i.e. x is finite), respectively 
at least ℵ1 (i.e. x is uncountable). Both are available in first order ZFC. 
The claim that they do not express what they seem to express appeals to the 
Löwenheim/Skolem-Theorem that any first order theory has models which 
are countable and models or arbitrary infinite size. As the two expressions 
– and in fact any theorem and axiom of ZFC – can be made true in such 
models, they do not enforce that the structure corresponding to ZFC has 
the properties the formulas of ZFC talk about. In this sense concepts like 
FINITUDE and UNCOUNTABILITY are inexpressible in ZFC. As SOL is 
categorical in its models, any property it expresses some structure as 
possessing is enforced on the models. See the two sentences (INF) and 
(FIN) above. SOL in this sense is able to express, for instance, FINITUDE 
and UNCOUNTABILITY. The Löwenheim/Skolem-Theorem does not hold for 
SOL. Given that sense of expressivity the only adequate set theory may be 
taken to be ZFC2. Unless – still following this line of reasoning – one 
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incorporates very large cardinals (like ‘measurable cardinals’) as these 
aren’t even uniquely 3rd order describable (cf. Jech 2003, p.295)! 

Now, the models which spoil the work of formulas like the two above are 
clearly unintended models. As a reply to the argument in favour of higher 
order logic this is not as weak as an appeal to an easy recognition of 
intended models seems. It is not just so that – as logicians like Russell and 
Frege or Lesniewski in pre-model theoretic semantics time sometimes said 
– the formulas of our formal language carry their (intended) sense on their 
sleeves; a view which only the now omnipresent distinction between pure 
syntax and (almost arbitrary) interpretation casts doubt on. In case of set 
theory – as in case of many other logical systems – we have a clear picture 
of the intended interpretation: in case of ZF – the iterative hierarchy [the 
picture just outlined in Chap. I]. The iterative hierarchy is a model for ZF, 
it not only makes its axioms and theorems true, but it makes them true in 
their intended interpretation – including those formulas which claim a set to 
be finite, uncountable, well-ordered etc. Given the picture provided by the 
iterative hierarchy the case against first order set theory based on 
expressive limitations seems rather weak. 

On the opposite, one may raise worries about SOL. In a wide sense of 
“logic” many formal systems are logics, sometimes just a set of formulas 
with closure conditions is taken as ‘a logic’. Logic as related to (human) 
reasoning requires a much narrower sense of “logic”. A logic, roughly, 
models some ways in which (human) reasoners derive consequences from 
premises. The modelling typically employs a formal system with an 
explicit syntax and semantics. A constraint on logics in this sense follows 
from the fact that humans are finite reasoners – at least in their earthly life. 
Therefore they can draw inferences only from a finite set of premises. If a 
consequence follows from a set of premises, it has to follow from a finite 
subset of these premises: compactness. A logic in the traditional, not 
technically liberalized, sense has to be compact. As SOL is not compact, it 
is no logic in that sense. So whatever else may have been arguments in 
favour of SOL they are to be set aside.33  

Within standard logic and an object-/meta-language distinction there might 
be a fruitful division of labour: the logic used will be a first order system, 
and the meta-language will contain a categorical description of the 
intended model (as any way of spelling out the intended model, even talk of 

                                                
33  At one point Shapiro (1991, pp.50-53) seems to see the problem, but proposes only 
vaguely to keep SOL semantic validity and justification in correct inferences apart, 
which at least sounds like forsaking capturing logical reasoning in a formal system. On 
some second thoughts by Shapiro cf. Shapiro 2003. 
It may also be worth reminding here that the non-standard models of PA, used as toy 
examples of a side-effect of compactness in introductory logic classes, have the 
unnatural features that “+” and “*” cannot be generally recursive in them. 
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intentions concerning reference to the iterative hierarchy, in a first order 
language can be re-interpreted again). 

Whatever virtues SOL as a linguistic framework has, whatever beauty 
second order descriptions may have from (a) God’s point of view, the 
human concept SET cannot be bound in its logic to them.  

By way of comprehension that logic naturally provides U, so that ideally 
we incorporate U at this level (i.e. not at some meta-level somewhere else). 

 

* 

 

Let us, finally, look at another theory beyond the size limitations of set 
theory: Category Theory. 

Category Theory wants to be even more abstract than set theory. Sets are 
just one category among many. According to its ‘official history’ category 
theory was invented as a branch of foundational studies because of the size 
limitations of standard set theory ZFC. One wanted a theory dealing in 
collections which unify all – really all, one might say – of a kind, especially 
all sets, even all categories. 

Many introductory books in category theory – like many in set theory – 
follow a more or the less naïve approach. They introduce a category of sets 
(cf. Lawvere/Schanuel 1991,pp.13-21). This includes a domain and an 
identity map. This domain has to be U and the identity map then has to be a 
function ƒ:U�U. Thus one seems to have U with its problems (e.g. a 
function ƒ:U×U�{0,1} representing membership). 

Self-reflective category theory distinguishes categories from ‘meta-
categories’. Meta-categories are in some sense ‘larger’. Mac Lane (1998, 
pp.7-26) introduces a category of sets with a ‘universal set’ UC. This is 
defined as the closure of several set building operations: 

(i)  x�u� UC � x� UC 

(ii) x� UC, y� UC � {x,y}� UC, <x,y>� UC, x×y� UC 

(iii)  x� UC � ℘(x)� UC, �x� UC 

(iv)  ω� UC 

(v)  If ƒ is surjective ƒ:a�b, a� UC, b ⊂ UC � b� UC 

UC  conspicuously is not defined as {x | x = x} and it is explicitly excluded 
that UC� UC. 

On closer inspection one sees that the crucial condition (v) corresponding 
to the Axiom of Replacement presupposes a distinction within the realm of 
sets. (v) would be equivalent to the tautological α�b�UC � b�UC if the 
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expression “b” was interpreted on sets in the usual sense only. “b” has to 
range over collections some of which are so that their member are in UC, b⊂ 
UC, so that they are sets themselves. (i) – (iv) could be fulfilled by some 
rank Vα within V. Mac Lane distinguishes ‘small’ from ‘large’ sets. “b” in 
(v) can range over ‘large sets’. UC is a large set comprising only small sets. 
Therefore UC∉UC. 

Calling collections with closure conditions like (i) – (v) ‘universes’ invites 
asking for the universe of all universes (i.e. some really universal 
collection). In fact this is a distinction between sets and classes again. UC is 
closer to V as to U understood here. The category of sets is a meta-category 
then. Applying the powerset operation to UC yields a cardinality beyond 
UC. 

Category theory deals with more of these meta-categories, each dealing 
with a collection that is treated in other theories as a class. Category wants 
to be even more abstract, however, Mac Lane (1998, p. 23) proposing a 
category of all meta-categories or a category of proper classes. This takes 
up the problem that classes in NBG should form a collection, which cannot 
be dealt with in NBG itself.  

These very large collections (e.g. the category of all meta-categories), 
however, play no role in theory building in (applied) category theory. 

The meta-theory of category theory is usually a mixture of FOL and basic 
set theory! 

If – sometimes – category theory is introduced as an alternative to a basis 
of mathematics in set theory (cf. Mac Lane 1998, pp.289-91) more basic 
concepts (like FUNCTION, DOMAIN, PULLBACKS) are needed than � in set 
theory. Supposedly we can easily understand them (only) because we 
already understand their usual sense from a set theoretic context. The 
concepts SET and MEMBERSHIP seem to be more intuitive and elementary. 
The basic axioms of set theory seem to be more natural than corresponding 
basic axioms of category theory as well. 

In its modelling of ‘small’ categories category theory, therefore, can be 
seen as modelling up to a rank Vα in V. With respect to V and other ‘large’ 
categories, the question of the collection of them resembles the problem of 
the class of classes in NBG or MK. 

What category theory needs can be provided by (paraconsistent) set 
theories with U. Such theories thus, additionally to their other merits, 
provide an option to unify two branches of standard mathematics, to re-
integrate category theory into set theory. 
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III 

VIRTUAL SETS AND CONSTRUCTIVISM 

 

As the problem of universality cannot be pushed up an ontological level to 
classes, we have to look at set theories dealing with the presence or absence 
of a universal set.  

Quine (1963) offers the ingenious idea of having a set theory with a 
universal set U = {x | x = x} and not really having it at the same time!  

In Set Theory and its Logic Quine tries to set out the common core of 
different conceptions of sets, i.e. he tries to develop as much set theory as 
possible with as little axiomatic assumptions as possible before introducing 
the axioms that set, say, ZFC and NF or NBG apart. One of his main tools 
in this enterprise is his theory of ‘virtual’ sets34. Virtual sets are set 
expressions built by curly brackets and set abstraction (like: {x | x > y ∧ x ≠ 
z}) that occur on the right hand side of “∈”. These set expressions thus are 
used to build statements of the form: w∈{x | ϕ(x)}. Since the language 
under consideration allows for statements like “x∈y” these set expressions 
function as singular terms syntactically on a par with variables that can be 
interpreted as having some set as value. The crucial point about their 
virtuality is that they cannot be quantified over (in that position to the right 
of “∈”). They are not members of any set (virtual or existent). Since Quine 
follows the methodological maxim that only those entities are admitted into 
a theory that are quantified over, these set expressions do not stand for or 
denote entities. They are short hand for statements in which conversion has 
occurred, i.e. w∈{x | ϕ(x)} is short – depending on the length of ϕ, of 
course – for ϕ(w). They are virtual also in the sense that some such 
expression might be quantified over later, so we do not know when we see 
such an expression whether it never materializes into a set later on. They 
can be quantified over indirectly in expressions like: (∃y)(y = {x | x < 18} 
∧ y∈z). One can thus introduce existential commitments piecemeal. One 
can have true inclusion and identity statements for virtual sets without these 

                                                
34  Quine speaks of  ‘classes’ but uses “class” synonymously to “set“. Martin’s theory 
of belief also works with virtual sets (cf. 1969, pp.123-35). (Glubrecht/Oberschelp/Todt 
1983) combines ideas from the Calculus of Classes with Quine’s theory of virtuality, 
but also adds virtual objects (in some kind of ‘outer domain’ like in Free Logic) as 
denotations for virtual sets! 
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sets existing as {x|ϕ(x)} ⊆ {x| ψ(x)} means (�x)(ϕ(x) � ψ(x)); and 
correspondingly the identity of virtual sets is a bi-conditional statement. 

Quine starts with a definition and an axiom for “=” ensuring extensionality 
of sets and a pair of weak axioms (providing the existence of ∅ and of pair 
sets, {x, y} for all x and y), which given the framework of virtual sets 
provide the finite sets (only). This framework contains FOL (with a ι-
operator) and the usual set theoretic constructions like unions and cuts. It 
contains the identification of objects with their unit sets!35    

Quine’s framework also can express the existence of a set x by “x∈U” with 
U being the universal set {x | x = x}, which may itself be merely virtual, 
however! U only contains existents, since the “x” left to “|” carries 
ontological commitment. Classes are thus excluded from the theory. 
Existential formulas are needed, since by virtuality not every singular term 
refers, and the usual quantification rules have to be restricted to existing 
objects. 

This resembles Free Logic and free usage of non-referring singular terms. 
Bencivenga (1976) thus tried to turn Quine’s ideas into Free Set Theory 
(FST). In contrast to Quine’s theory FST allows virtual sets to be members 
of virtual and of existing sets. Every virtual set has its singleton. However, 
as FST defines ∅ as the set containing no existents and postulates 
Extensionality as equality in existing members all the singletons of virtual 
sets are identical! All are identical to ∅. Not much is gained so. As Quine 
may allow for a virtual Russell Set FST shows the antinomic sets to be 
non-existent. FST disproves the existence of the set of all existing sets, 
which is only virtual in Quine’s theory, but where U ≠ ∅. The virtual set of 
all virtual sets does not exist in Quine’s theory, and it is provable identical 
to ∅ in FST. So FST provides no real progress. [We come back to the 
usage of Free Logic, however, with system APS in chapter V.] 

Virtuality is a powerful idea, as can be seen by its employment in 
arithmetic. Finite sets turn out to be sufficient for standard arithmetic! Each 
natural number can be constructed as a finite set, say the set of its 
predecessors (the predecessor relation being the converse of the usual 
successor relation). For some purposes of arithmetic we need to talk about 
the set of all natural numbers however. Z introduces the set of natural 
numbers for this purpose by the Axiom of Infinity. This need for infinity 
can be circumvented. The decisive idea is to use a virtual set instead of the 
Axiom of Infinity. The Axiom of Infinity uses the successor operation and 
so ‘looks forward’ towards infinity. One may also use the converse of the 
successor operation and ‘look backwards’ instead. We take ∅ as 
representing 0, as usual. The successor function is modelled by the function 

                                                
35  This is a substantial and controversial assumption. We come back to it later when 
we discuss theories for which this distinction is of outmost importance. 
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giving for any x the unit set {x}. Let us denote the predecessor function by 
“φ” and the closure of a function ƒ with respect to a set x by “ƒ*x”. Now 
we can define that some number x is smaller or equal than a number y by: 

 (≤) x ≤ y  � (∀z)(y∈z ∧ φ*z ⊆ z ⊃ x∈z) 

i.e. x is smaller than y if x is present in all sets which contain y and are 
closed under the predecessor function. We can now define � by 

 (�) � is short for “{x | ∅ ≤ x}” 

Nothing demands that � is more than virtual! Note that the quantifier in (≤) 
needs only to range over finite sets. The finite sets can be identified at this 
point as sets that contain some number as largest element and are closed 
with respect to the predecessor relation. A further axiom – a finite version 
of the Axiom of Replacement – is added:  

(FR) The range of a function applied to a finite set exists.  

This again yields only further finite sets. By this axiom mathematical 
induction can be derived as the scheme 

 (I) ϕ(∅) ∧ (∀x)(ϕ(x) ⊃ ϕ({x})) ∧ y ∈ � ⊃ ϕ(y) 

Given the finite version of replacement, induction and the thus available 
notions of iteration and ancestral the well known arithmetical operations 
and (Peano/Dedekind) axioms for addition, multiplication and 
exponentiation can be derived (Quine 1963: §16).  

Arithmetic can thus be done without infinity, it seems. No explicit 
commitment to infinity has to be introduced in the corresponding core set 
theory. 

Quine’s theory, however, gives way to ever larger infinites when the need 
for real numbers arises, supposing that there is a need for real numbers. 
Rational and real numbers are introduced as sets of sets of natural numbers. 
For these definitions to work (i.e. get beyond the empty set) one has to 
ensure that for arbitrary subsets of � their union exists, and this is an 
existential commitment to infinity. One such axiom of infinity then is: 

(INF)  (∀x)(x ⊂ � ⊃ x ∈ U).  

 

The main problem for our topic universality is, on the one hand, again the 
presupposed and non explicit meta-theory. For instance: the quantifier in 
(≤) has to range over the set of all finite sets, and this set, of course, is a 
non-finite set. The meta-theory laying down the truth conditions for the 
quantifiers in this set theory has to use an infinite domain. The “x” in the 
definition of the universal set U has to range over all sets.  

On the other hand the idea of mere virtuality itself seems problematic. Take 
the collection of all x such that x = x. By means of virtuality the theory can 
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talk about that collection, but whereas the theory assumes that the items in 
the collection are existent (it even defines existence as membership in U) 
the collection is merely virtual. In case the theory develops in the direction 
of Z, the virtual set U has to stay merely virtual, on pains of deriving the 
antinomies using U in the Axiom of Separation (AS). In this case the 
treatment of universality comes down to its (non-)treatment in Z. In case U 
will be quantified over later (i.e. its virtuality is desolved into real 
existence) one option will a development in the direction of NBG U 
undergoing metamorphosis into a class. The treatment of universality 
comes down to its treatment in NBG, which again means its non-treatment 
for classes. Another option in case U will be quantified over later will be 
the avoidance of classes. In that case, however, we should expect some 
substantial changes in the set theoretic framework (e.g. exchanging 
Separation for a restricted subset building axiom). Prima facie quantifying 
over U makes U existent and then we have: 

U ∈ U 

contradicting the Axiom of Foundation. And we should even have – for a 
start! –  

℘(U) ∈ U 

which with the immediate ℘(U) ⊆ U  yields more strange results. U�U 
not just contradicts the Axiom of Foundation, but also contradicts the 
standard ways of introducing cardinal or ordinal numbers (as the elements 
of ℘(U) exist, ℘(U) cannot have more members than U, thus, 
contradicting Cantor’s Theorem, ℘(U) has no larger cardinality than U). 

All this seems plainly bizarre (of course only given our standard/iterative 
idea of sets).  What makes this option interesting is that it deals with the 
problem of universality in set theory itself. We preferably explore some set 
theories with universal sets (i.e. universal sets which are more than virtual). 

Quine’s theory is embedded within standard logic and set theory. Virtual 
sets are virtual in the sense of not being real and not yet being real, but 
within reach of stronger axioms. Quine’s standard meta-theory involves 
actual infinity and standard set theory. 

 

* 

 

Intuitionistic ZF (IZF) does not change the picture with respect to U. It 
even allows for a double negation interpretation of ZF. Some constructive 
set theories work with classes and introduce V as well. In this case the 
objections of the preceding chapter apply. Constructive and intuitionist set 
theories also forsake the full Powerset Axiom and may restrict Separation; 
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to avoid re-introducing tertium non datur they have to forsake the Axiom 
of Choice and the Axiom of Foundation (cf. Aczel/Rathjeu 2001). Thus 
they add non-intuitive features to the problem of the universal set in Z. 

Constructivity in the sense of the Axiom of Constructability 

 (VL)  V = L 

with L being the realm of constructible sets (i.e. the sets which are built by 
separation using a formula ϕ of the language) makes use of the classes V 
and L and is in fact a non-standard version of ZFC+GCH (with restricted 
Powerset, of course). 

A more radical version to the stepwise approach to set existence is (radical) 
constructivism. The constructivist allows only for those sets which either 
have been individually or generically shown to exist. Allowing for schemes 
of existence proofs results in embracing a totality where not all instances 
have been shown individually. Once some such large totality has been 
admitted larger ones result by construction. Nonetheless, as they are under 
construction even the liberal constructivist can work with the idea of a 
growing universe. The realm of mathematical objects grows as our 
constructive efforts enfold. Seen in this light a constructivist may hold that 
there is no universal set as the idea of its existence presupposes the wrong 
idea of an already completely present universe. (This may resemble the 
Kantian undermining of ‘the antinomies of pure reason’, which each 
presuppose – according to Kant illegitimately – a developing series as also 
completely ‘given’.) 

One set of objections to this constructivism focuses on issues of cardinality. 
The sets we (as human kind) have constructed individually are only finite. 
Generic proofs may put an infinity of sets within reach. Again the number 
of thee proof schemes we (as human kind) have constructed will be finite. 
The constructivist’s position seems to fall back into a theory of a merely 
potential infinite or even strict finitism (of no infinity at all). Both positions 
deviate substantially from received, successful mathematics. They carry the 
burden of proof whether they can deliver what the sciences need. Strict 
finitism may commit us, further on, to paraconsistency (cf. Bremer 2007). 

The second set of objections focuses on the current stage of construction. 
Even if construction work continues, at every single stage of construction 
we may ask whether there is a universal set containing all the sets 
constructed so far. At any stage, shouldn’t {x | x = x} exist? All questions 
concerning U thus return, even if they are now aimed at a succession of 
ever increasing universal sets. Non-realism so does not help at each step. 

This obviously applies to a predicative set theory of rank-wise construction 
of sets within an iterative hierarchy (cf. Wang 1970,pp. 559-623). 
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IV 

CONSISTENT SET THEORIES WITH UNIVERSAL SET 

 

On occasion of the 1971 Berkeley symposium celebrating Alfred Tarski’s 
achievements in logic and algebra Alonzo Church, who otherwise did not 
work much in set theory, presented a new system of set theory (Church 
1974). 

Church saw the two basic assumptions of post-naïve set theories in a 
restriction of comprehension to a form of separation (as in ZFC) and in a 
limitation of size (as in NBG). Similar to the criticism levelled against 
Limitation of Size in chapter II above Church regarded Limitation of Size 
as ad hoc (against the antinomies) and ‘never well supported’ as it 
proclaims a stopping point of further structures although classes are 
introduced (in NBG and MK) as collections, which can be quantified over. 
Church’s set theory – let us call it “CST” here – follows ZFC in its idea of 
separation, but allows for collections that are ‘large’ in a way that even the 
larger transfinite sets of ZFC are not. CST does not introduce classes, but 
introduces a distinction within the area of sets. It allows even for U = {x | 
x=x}. 

CST distinguishes between ‘low sets’, which have a 1:1-relation to a well-
founded set, ‘high sets’, which are (absolute) complements of low sets and 
‘intermediate’ sets which are neither. These labels pertain to the cardinality 
of sets. High sets are in 1:1-correspondence to the universal set U, low sets 
never. Because of the CST version of the Axiom of Choice for a set x 
which is not low every ordinal has a 1:1-relation to some subset of x.  

So the universe of CST may consist only of sets, but not all are well-
founded. Obviously U�U. U is the complement of ∅, so U is the 
paradigmatic high set. ∅ is well-founded, and, of course, ∅�U. The 
constant predicate “wf( )” expresses the property of BEING WELL-FOUNDED, 
defined in the usual sense (using some order relation “<”): 

(�x)(wf(x) ≡ x=∅ �  
(�y)(y ⊆	x �	(y ≠ ∅ �	(�z)(z�y �	(�w)(w�y �	z < w))))). 

CST can be phrased as a second order system, quantifying over single- or 
two-argument open formula ϕ. One could understand this second order 
quantification as using classes, but only given a full-blown second order 
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semantics [cf. Chap. II]. One could use schemata instead (i.e. having only 
free variables for open formula), as in ZF. We follow the first option here 
and make CST a second order theory.36 

The CST axioms are: 

• Extensionality, Pair Set, Sum Set, Infinity as in Z 
•••• Choice: (�R)((�x)(�y)R(x,y)	�	(�ƒ)(�x)R(x,ƒ(y))) 

•••• Product Set: (�y,z)(y�z � (�u)(�x)(x�u ≡ y�z � x�y)) 

• Separation, Powerset, Replacement restricted to a condition “wf(x)“,  

e.g. Axiom of Powerset:  (�x)(wf(x)�(�y)(�z)(z�y ≡ z ⊆ x)),  

Axiom of Separation:   (�x,F)(wf(x)�(�y)(�z)(z�y≡z�x � F(z))    

[where “y” is not free in “F”] 

The Axiom of Product Set allows having a substitute for separation in high 
sets. What is missing is the Axiom of Foundation of ZF. 
These axioms of CST are strong enough to yield ZF. Dropping the non 
well-founded sets one gains a ZF universe. The two theories are equi-
consistent (cf. Church 1974, §5). And without violating this relative 
consistency CST can be extended by axioms which go beyond ZFC. These 
are: Strong Choice (that U can be well-ordered), Cardinality Axioms (that 
there are cardinal numbers in the sense of Frege and Russell for all well-
founded sets) and especially the Axiom of Complements: 

 (�x)(�y)(�z)(z�y≡z∉x). 

The existence of absolute complements and the existence of U make CST a 
more natural set theory than ZFC, one may argue. 

The argument in ZFC from the Axiom of Separation to the non-existence 
of U and Cantor’s Theorem pose no problem for U and ℘(U) for the same 
reason: the Axiom of Separation and the Axiom of Powerset are restricted 
to well-founded sets. 

The argument to the non-existence of U [cf. Chap. I] now establishes that U 
is not a well-founded set. We knew that before. As U is not well-founded 
we do not have ℘(U) in the first place.  

One might now argue: So, in CST as well, there are some collections 
which are there – in this case inter alia the collection of all subsets of U, 
which are obviously existent if U is – but cannot be collected into a set; 
some collections which should exist, like ℘(U), do not exist, because they 

                                                
36  Remember that in a full blown second order setting the Axiom of Choice is not 
equivalent to the Well-Order Principle. In fact the Well-Order Principle is not a theorem 
of ZFC2 (cf. Shapiro 1991, pp.106-108). Neither the presence of the Axiom of Choice 
nor the presence of Foundation implies that all sets can be well-ordered in ZFC2. 
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are too large, just as in NBG set building operations cannot be applied to 
classes. Like NBG and MK tell us not much about classes, CST uses 
‘large’ sets, but large sets cannot do much, since they are not subject to 
Separation or other set building principles. 

This criticism, however, should be kept apart from a similar criticism 
levelled against NBG. In fact, all subsets of U are collected into a set – U 
itself. What cannot be done is separating a set ℘(U) from U. The same 
applies to the ordinals: U is a set in which all ordinals are collected, but – 
on pains of re-introducing the Burali-Forti antinomy – we cannot separate a 
set which collects only the ordinals. So does CST make some progress in 
comparison to NBG? On the one hand CST can avoid using the second 
ontological category of classes, with all its problems. On the other hand 
NBG can collect just the ordinals into their own proper collection, albeit a 
class. NBG cannot introduce ℘(V), as CST cannot introduce ℘(U). 

It is true that although the principal idea behind CST was rejecting 
Limitation of Size, CST exhibits some shadow of Limitation of Size: All 
high sets are by definition of the same size as U, just as in NBG all classes 
are of the same size as the class of sets. 

 

* 

 

The widest known set theory with a universal set U – for which we have 
U∈U – is Quine's NF (from his paper "New Foundations of Mathematics", 
1937). NF is Quine’s set theory with a universal set that is not just virtual is 
NFU. 

NF works by Extensionality and a Comprehension Scheme that is not as 
restricted as in ZFC.  

Quine's NF Comprehension Scheme uses the idea of stratified formula 
(similar to the simple theory of types): 

   (∃y)(∀x)(x ∈ y ≡ ϕ(x)) 

where "y" is not free in ϕ and ϕ is stratified. A formula is stratified if the 
set on the right hand side of "∈" is of a higher level than that on the left, 
and its definition does not include that on the left. A test for stratification 
consists in level assignments for sets or in trying a translation into the 
simple theory of types. The language of NF itself is not typed, thus 
avoiding duplication of structurally identical sets at different levels, but NF 
uses the stratification test to avoid the antinomies. NF is equiconsistent 
with the simple theory of types supplemented with the full ambiguity 
scheme, which asserts that a formula ϕ is equivalent to formulas ϕ1, ϕ2 … 
structurally similar to ϕ with type levels uniformly raised by 1, 2 … 
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NF has the power to introduce Pairing, (Absolute) Complement, Powerset, 
and Union as instances of Comprehension. 

NF allows U = {x | x = x}, since “x = x” is a stratified formula. {x|x�y} 
can be stratified, defining the so-called ‘essence’ of an object (the 
collection of all its properties). “|x| = |{∅,{∅}}|” is stratified as well, so 
natural numbers (in this case: 2) can be understood in Frege’s way. 
Stratification excludes, however, the usual definition of an infinite set (as in 
the Axiom of Infinity in Z). One meets in proofs and constructions in ZFC 
many unstratified set definitions. NF has to forsake these sets or has to 
introduce workarounds. Cardinal numbers and ordinal numbers come apart 
(cardinal numbers are not special ordinal numbers as in ZFC). 

Non-stratified formula can be used in NF (this is different to Type Theory), 
but they cannot be used to define sets. Since non-stratified formulas can be 
used in NF one does not need a universal set or an empty set for every level 
(as in Russell's Type Theory) to have well-formed formula. 

The antinomies – especially the (original) Russell Set – are avoided, since 
the corresponding open formulas in the Comprehension Scheme are not 
stratified. NF itself is not known to be consistent. NF with the Axiom of 
Counting, which says that a cardinal number is equal in cardinality to its 
singleton image, can prove the consistency of Z. No relative consistency 
proofs to ZF are available. Note that instances of Replacement are not 
stratified. Some subsystems of NF have been shown to be consistent (cf. 
Forster 1992, Holmes 1999). 

U∈U means that Cantor's Theorem does not hold (in general) in NF; but 
the set of unit sets of its elements is smaller in cardinality than U itself! The 
usual proof of Cantor’s Theorem defines a set y�℘(x) relative to a 
supposed bijection ƒ between x and ℘(x) as y = {z|z�x � z∉ƒ(z)}, which 
is not stratified. In NF one can define, however, y = {z|z�x � z∉ƒ({z})}, 
which is stratified with ƒ being a supposed bijection between the set of 
singletons of z�x and ℘(x). By the usual indirect argument one sees that 
there is no bijection between {z|z={w}�w�x} and ℘(x), which means 
|℘(x)| > |{z|z={w}�w�x}| = |℘1(x)|. As ℘(U) ⊆ U we have |U| ≥ |℘(U)| 
and thus with the previous inequality we know that the cardinality of the set 
of singletons of elements of U is smaller than |U|! |U| > |℘1(x)|. That could 
mean that not all elements of U possess a singleton: although we have the 
set of all singletons in NF, as {x| (�y)(x = {y})} is stratified, not all objects 
seem to have a singleton. This cannot be the solution. Comprehension 
provides a singleton for any object z: “x�y ≡ x = z” can be stratified. 
Contradiction is avoided finally by the non-existence of the function which 
maps any object to its singleton. This function does not exist even though 
every object has its singleton! 
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NF has other highly controversial features like the existence of infinite 
descending chains of cardinals, what conflicts with the Axiom of Choice, 
which thus doesn't hold in NF, which again implies – even in the absence 
of an Axiom of Infinity – that the universe of NF has to be infinite, since 
all finite sets can be well-ordered. The universe of NF, supposedly U, 
cannot be well-ordered then. NF might be consistent, though, with the 
claim that all well-founded sets can be well-ordered. Some functions (like 
the successor function) are not part of the universe – so where are they? 

One can extend NF by introducing classes. In fact if one denies in NF 
Rosser’s Axiom of Counting [see above] one can prove the existence of 
non-set collections which are finite! Indeed a ‘strange landscape’ (Forster 
1992, pp.29-32). 

If one restricts the set building axioms to sets and uses unrestricted class 
comprehension one arrives at Quine’s system ML (cf. Quine 1963, §§40-
42). The problems the system NF has with unstratified induction and its 
incompatibility with the Axiom of Choice are resolved then. There is a 
class of all sets, �U, and Cantor’s Theorem does not apply to it, as it is no 
set (i.e. has no powerset at all). Apart from resolving these problems 
classes play no constructive role in ML. Obviously we find ourselves in a 
system very similar to MK, and corresponding criticism applies here [cf. 
Chap. II]. 

 

* 

 

A version of  NF that tries to avoid many of the peculiarities of NF is NFU 
(NF with urelements), developed by Randall Holmes (2005). NFU is built 
from NF by adding urelements and restricting extensionality to non-empty 
sets, introducing ∅ by an axiom. One may think of it as a subsystem of NF 
that allows only such models which contain the urelements. 

NFU is consistent! It is consistent with the Axiom of Choice!  

NFU is an extremely strong set theory. It can provide models for ZFCU by 
having very large cardinals (strongly inaccessible cardinals). 

By working with a longer (finite) list of simple axioms (like Extensionality, 
Complements, Unions, Singletons, Cartesian Products, Converses, 
Domains, Projections, Singleton Image of a Set, Choice (!), Infinity…) 
Stratified Comprehension can be proven as a theorem! 

The universal set is provided by its own axiom:  

(U)  {x| x = x} exists.  

U contains all sets as elements. All sets can be well-ordered, which is 
equivalent to the Axiom of Choice. So U can be well-ordered, in contrast to 
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U in NF. By the existence of U, the Axiom of Complements and Stratified 
Comprehension absolute complements exist. 

NFU also has its peculiarities: urelements, atoms and ordered pairs (!) are 
taken as primitive. One wonders what is supposed to be ‘in’ the ordered 
pair <x,y> if not x and y. And the NFU Axiom of Ordered Pairs contains 
the standard identity condition on ordered pairs without saying that an 
ordered pair is a set. The Axiom of Pairing of Z looks more natural. 

More problematically: [�], {<x,y> | x∈y}, does not exist, the existence of 
[�] leading to antinomies.37  Whereas we thus have a set U, which may 
stand in as the extension of the predicate “set”, we have no extension for 
the membership relation, although [�] looks as natural as U. Interestingly 
[⊆] = {<x,y>| x ⊆ y} exists. So in many cases “{x}⊆y” may substitute for 
“x�y”. 

The non-existence of [�], which, of course, entails [�]∉U, entails that the 
membership relation is not modelled by U (U has no element 
corresponding to it), so that U cannot be a model for NFU itself. So as with 
the standard set theories ZF, ZFC, although working with a universal set, 
NFU has to look outside of itself for models. If the universal set is really 
universal, where should that outside be? We seem to be back to larger 
cardinals or similar collection like entities or some hierarchy [cf. Chap. I & 
II]. 

Not every supposed set exists, e.g. the set of all Cantorian ordinals. This is 
not better than in ZF. Some collections (like U) which do not exist in ZFC 
can exist in NFU, but as NFU does not distinguish sets from classes, some 
collections (like that of Cantorian ordinals) which exist in NBG do not 
exist in NFU. NFU can be viewed as trying to capture some middle ground 
between the other systems. This yields its own peculiarities. 

Especially problematic is that some version of Cantor’s Theorem is 
provable. The large sets (like the set of ordinals or U) in NFU have the 
strange property of not being equinumerous to their singleton images! How 
can that be? Although every object has a singleton (by the Axiom of 
Singletons), just as in NF the function giving the singleton to every object 
does not exist.38   

|℘1(U)| < |U| seems to contradict the Axiom of Singletons, a provable 
contradiction only being avoided by the non-existence of a general 

                                                
37  Proof (Outline). If [�] exists, so does its complement [�] by the Axiom of 
Complements. [=] = {<x,y> | x = y} exists, since “x = y” is stratified. Then the cut of 
[=] with [�] exists, and this cut is a cousin of the Russell Set: {<x,y> | x = y � x ∉ y}. 
38  Proof (Outline). If the function ƒ:U→℘1(U) existed, extensionality of the singleton 
would yield a function ƒ-1, so |U| ≤ |℘1(U)|, which contradicts the Cantorian argument 
to |℘1(U)| < |U| (given above with respect to NF). �  
Holmes (2005, pp. 109-110) provides another proof which relates to stratification. 
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singleton function (cf. Quine 1963, p.293). We have – so to say, in analogy 
to Separation restricting Comprehension in Z – restricted singleton 
construction! 

So a corollary of the non-existence of the (general) singleton function is 
that the cardinality of the set of singletons of members of U, |℘1(U)|, is less 
than the cardinality of U. This leads in NFU to the distinction between 
‘Cantorian sets’ x with |x|=|℘1(x)| and ‘non-Cantorian sets’, which 
resembles other limitation of size distinctions. 

These cardinality issues lead to Specker’s Theorem (cf. Holmes 2005, 
pp.132-34): 

 | ℘(U) | < |U| 

which is read as proof that there are (many, many) urelements/atoms 
besides sets in U. Atoms, which have no members, are not elements of 
℘(U), which contains all subsets of U, but not non-sets like atoms. If there 
are no atoms one expects for a system with a universal set U that one has 
|℘(U)|=|U|. In fact most objects in U in NFU then have to be atoms or pairs 
(i.e. ordered pairs not reducible to sets).  

Unlike some version of NF in (Quine 1963) atoms are not identified with 
their singletons in NFU. As mentioned, ordered pairs are also objects in 
their own right besides sets. Ordered pairs can be taken as atoms in NFU as 
no claim with respect to composition – only with respect to their identity 
condition – was made. Specker’s Theorem mirrors this conception. 

Again: 

Specker's Theorem for NFU asserts that most entities in U are not 
subsets of U, which means most of the universe has to consist of 
urelements! 

So: in all known models of NFU |U| > |℘(U)|! All relations are subsets of 
U×U, and all functions ƒ:U�U should, if they are allowed to exist, 
themselves be sets of ordered pairs, thus be elements of U, thus be 
available as their own arguments, thus sometimes be forbidden to exist as 
sets at all in a consistent setting (e.g. a function of negative self-
application). NFU itself can have models only in a realm which possesses 
properties quite different from what we expect of sets. NFU, so, deals not 
just with sets. In fact the non-sets vastly outnumber the sets in any model of 
NFU. Ideally the non-sets contain just the urelements, but by the argument 
above concerning the Axiom of Singletons we should expect there to be a 
collection containing the ordered pair of any x and its singleton, but this 
collection cannot be a set in NFU. A crucial question is whether NFU can 
at least recapture ordinary sets – ZFC-like entities – as a sub-domain. Even 
though this is possible, however, we regain simply ZFC as a sub-universe 
– and are none the wiser with respect to our universality problem, as U, 
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because of its behaviour in NFU, cannot be part of that recaptured realm. U 
is not ‘Cantorian’. Even the ordinals of NFU cannot be well-ordered in a 
set model of NFU! Holmes does not introduce proper classes into NFU, but 
admits their existence, supposedly objects of a broader theory (cf. Holmes 
2005, p.50). NFU is not truly universal, as well. 

 

NFU, thus, may provide a lot of machinery to do ordinary mathematics, the 
gain with respect to our set theoretic intuitions brought by having a 
universal set U, however, seems to be more than lost by the consequences 
of Specker’s Theorem and the absence of [�]. 
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V 

PARACONSISTENT SET THEORIES  

WITH A UNIVERSAL SET 

 

ZFC, NF/U, even NBG and MK forbid the existence of collections which 
intuitively should be there as all items to be collected are there: be it not 
just U, but the set of all ordinals, [�], the general singleton function, the 
pair of the class of ordinals and the class of cardinals etc. Maybe these 
collections are not sets, set theory only dealing with sets. Mathematics, 
maybe, has no practical use for other collections. Maybe – maybe not. If 
some theory saves the intuition that these collections are collectible this 
could furnish it with a crucial advantage over its competitors. 

In Z there is neither an unrestricted comprehension axiom or schema nor a 
universal set. Paraconsistent set theory regains both.39 

Apart from semantic closure set theory is one of the main motivations for 
the strong paraconsistent approach (so-called ‘dialetheism’), which accepts 
both that there are some true contradictions as well as the existence of 
inconsistent objects. The consideration starts with the simple question: 
What is a set? 

                                                
39  Whereas in the other paragraphs common knowledge of standard logic was 
assumed we have to divert in this paragraph several times to outline the basics of the 
involved paraconsistent logics or theories. In most cases only a rough sketch is provided 
to save space. There are excellent introductions to Relevant and Paraconsistent Logic 
(and paraconsistency in general) on the market. Brady (2006), Priest (2006) and Routley 
(1980) supply in-depth coverage of their respective systems, semantics and theories. 
The preferred system in this chapter, APS, is outlined in somewhat greater detail, as it 
cannot be found elsewhere. Therefore in this chapter additional schema are used which 
show the syntactic type of expressions more clearly: “á”, “é” are a schema for 
individual terms, “P” is schematic for some general term, “R” for some relation. “A”, 
“B”…(sentences), “G( )”, “F( )” … (general terms), “a”, “b”… (singular terms) are 
abbreviated expressions of the formal languages themselves. We allow rules to use 
these expressions. In case rules or axioms involve no schemata but abbreviations the 
systems are understood as containing rules of uniform substitution into an appropriate 
syntactic type, excluding, of course, substituting into logical constants (like “=” or the 
existence predicate “E!( )”). 
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The standard account of concepts in FOL semantics goes like this: What 
does “( ) is a tree” refer to? It refers to the set of all trees. A 
concept/property is understood if we understand what its extension is. 
Now, what is a set? It cannot be the extension of “( ) is a set”, since this 
extension would be a universal set, but there is none in Z, the standard set 
theory. So in standard meta-theory there is no set/extension corresponding 
to our usage of “( ) is a set”. For restricted usages (sets of some kind, 
cardinality, order etc.) there are sets, but one cannot speak of sets in 
general. Standard set theory seems using a fundamental notion that can at 
best be partially explained by this theory! This runs against our intuitive 
understanding of “set”.  

Naïve Comprehension expresses not just naivety, but the intuitive idea of 
collecting objects with respect to some condition or property. Especially 
“x=x” looks innocent enough to warrant a collection. 

And the absence of a universal set is not just a problem of understanding 
what a set is. Some set theoretical explanation of other concepts make use 
of a universal quantification about sets (cf. Priest 2006, pp.28-37). 

If one defines: 

 Σ ϕ  ϕ follows from a set of premises Σ �if and only if � 
  every interpretation that makes all γ∈Σ �true makes ϕ true. 

one talks about any interpretation. And the domain of an interpretation is 
arbitrary. It may be a set of arbitrary high rank. So the supposed definition 
talks about all sets of an arbitrary high rank (i.e. of the completed 
hierarchy), but in ZFC we can never get at all sets unified! 
So it seems that our understanding of consequence cannot be modelled by 
ZFC. ZFC can only define an incomplete model thereof. 

And if there is no universal set, there is no universal complement of a set. 
Some theories (category theory) want to talk about such sets, however, as 
we have seen. Granting this reasoning some prima facie plausibility calls 
for a closer look at paraconsistent set theories. If the costs of paraconsistent 
set theories add up more than expected, some of the supposedly ‘intuitive’ 
and ‘innocent’ claims have to be reconsidered [in chapter VI]. 

 

* 
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Richard Routley was one of the first to introduce. paraconsistent set theory. 

He uses the Relevant Logic DL (cf. Routley/Meyer 1976) 

Axioms: 

(A1)  A → A 

(A2)  (A → B) ∧ (B → C) → (A → C) 

(A3)  A ∧ B → A 

(A4)   A ∧ B → B 

(A5)  (A → B) ∧ (A → C) → (A → B ∧ C) 

(A6)   A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C) 

(A7)   ¬ ¬A → A 

(A8)  (A → ¬B) → (B → ¬A) 

(A9)    A → A ∨ B 

(A10)  B → A ∨ B 

(A11)  (A → C) ∧ (B → C) → ((A ∨ B) → C) 

(A12)  ¬A ∧ ¬B → ¬(A ∨ B) 

(A13)  ¬(A ∧ B) → ¬A ∨ ¬B 

Rules: (R1) �ϕ, �ϕ → ψ � �ψ 

  (R2) �ϕ → ψ � �(¬ψ → ¬ϕ) 

with the following quantificational extension (Routley 1980, p.290): 

Axiom schema:  

   (A14) (∀x)P(x) → P(á) 

   (A15) (∀x)(A → P(x)) → (A → (∀x)P(x)) * 

   (A16) (∀x)(A ∨ P(x)) → (A ∨ (∀x)P(x)) * 

   (A17) (∀x)(P(x) →A) → ((∃x)P(x) → A) * 

         [* x not free in A] 

Rules: (R3)  |ϕ � |(∀x)ϕ 

  

(Naïve) Comprehension is expressed with a Relevant conditional: 

 (NCR)   (∃y)(∀x)(x∈y ↔ P(x)) 

(NCR) has no restrictions on “P( )” (like “y does not occur in P( )”) so that 
one can have a set y such that x∈y ↔ ¬x∈y (taking “¬( )∈y” as “P( )”). 
This is a bizarre set of all things that belong to it iff they do not belong to 
it! 
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Such usages of (NCR) immediately raise the question of inconsistent 
ontology (i.e. whether and where are objects like the set described?). 

(NCR) is no longer well-founded: a set like the Routley Set y = {x | x∈y ↔ 
¬x∈y} may contain y itself. (NCR) allows for {x | x∈x}.40 There is even 
the set y’ = {y | x∈y ↔ ¬x∈y} – etc. 

Rephrasing the Axiom of Extensionality using a relevant biconditional 
allows deriving even the Axiom of Choice from it and (NCR). Since also 
irrelevant theorems follow, the Axiom of Extensionality is replaced by a 
rule and a definition: 

 (EXTR) (i) x = y � x∈z → y∈z 
   (ii) x = y  (∀z)(z∈x ↔ z∈y) 

This rules allow for the substitution of identicals and defines how identity 
of sets is to be taken. For substitution we have: 

    (SUB) �A ↔ B � �ϕ(A) → ϕ(B) 

i.e. if A and B relevantly imply each other than B can be substituted in any 
context ϕ of A for A so that the resulting sentence is still relevantly 
implied. (Different antinomies do not imply each other.) 

(NCR) allows defining sets otherwise introduced by axioms: 

Existence of the empty set ∅: 

 (∃y)(∀x)(x∈y ↔ ¬x=x) 

This set is empty, since even in DL we have: (∀x)x=x 

Existence of the absolute complement of some set x: 

  (∃y)(∀z)(z∈y ↔ ¬z∈x) 

x is some arbitrary set here, so that we can have the complement of any set 
we wish. In ZFC there are only relative complements of x (in some 
superset) because of the more restricted Axiom of Separation. 

The antinomies can be derived in this set theory, but the underlying 
paraconsistent logic avoids triviality. 

That versions of the Axiom of Choice can be derived within his set theory 
shows, according to Routley, the realistic character of paraconsistent set 
theory (i.e. the domain is simply there, with all functions defined on it, 
whether we have constructed them from previously constructed material or 
not). If w is any family of non-empty (disjunct) sets v, any set theory with 

                                                
40   So the Foundation Axiom of ZFC is not part of paraconsistent set theory based on 
unrestricted comprehension. Foundation was a late comer in ZFC any way, has no 
mathematical applications outside set theory, and is dropped in otherwise standard non-
founded set theory (cf. Aczel 1988). 
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unrestricted Naïve Comprehension (like Routley’s theory here, but also like 
APS later in this chapter) can circularly introduce the choice function  

cw = {<v,x>| v�w � x�v � �(�z�v)(z ≠ x � <v,z>�cw)}  

The anti-foundationalist universe can be well-ordered then.  

 

What about the metalogic of Routley's set theory? Note that Routley’s 
theory is a set theory employing neither many-sorted variables nor working 
with classes. Routley (1980, pp.931-33) extends his logic DKQ by some 
axioms for arithmetic to his paraconsistent arithmetic DKA. He can prove 
that DKA is not trivial, i.e. absolute consistent: (�ϕ)�DKAϕ. A system like 
DKA being inconsistent does not meet the condition of Gödel's Second 
Theorem, so can be used itself to prove its own (absolute) consistency. This 
proof by Routley, however, uses a truth functional conditional like that of 
the paraconsistent logic LP. So this proof – because of the Curry 
Conditions (i.e. conditions allowing deriving a version of Curry’s Paradox) 
– cannot be extended to paraconsistent set theory.41  Routley and Brady 
(1989) nevertheless proved the non-triviality of a paraconsistent set theory 
using a logic with a negation semantics in terms of the Routley star * and 
the ternary accessibility relation, which are both highly controversial in 
being considered artificial by many. Brady improved on that situation by 
proving the non-triviality of an inconsistent set theory (i.e. one involving 
inconsistent sets) with respect to a truth-functional dialethical semantics 
(cf. Brady 2006, pp.242-45), the matrixes of which, however, are contrived 
to the purpose and not as natural as the matrixes of LP. He states his set 
and class theory in his logic DJdQ. 
Relevant Logic based set theories like Routley’s, however, violate the idea 
that sets are extensional. The relevant conditional “�” is intensional 
(usually having a possible worlds semantics). By its use in (NC) sets 
become intensional! Limitations of substitutivity with “�” carry over to 
sets. For instance x�y ↔ x�y � α (for some truth α) does not relevantly 
hold true, thus y and {x | x�y � α} although having the same members 
cannot be said to be identical (cf. Priest 2006, pp.253-55). 

 

* 

 

                                                
41  On LP and the Curry Conditions cf. Priest 1987, 2006, Restall 2000, Bremer 2005. 



PARACONSISTENT SET THEORIES WITH UNIVERSAL SET 

 62  

Brady's version of paraconsistent set theory (cf. Brady 2006) also employs 
the ideas behind (NCR) and (EXTR). The underlying logic is DJdQ.  

Axiom schemes:   

  (A1)  A → A 

  (A2)  A ∧ B → A 

  (A3)  A ∧ B → B 

  (A4)  (A → B) ∧ (A → C) → (A → B ∧ C) 

  (A5)  A → A ∨ B 

  (A6)  B → A ∨ B 

  (A7)  (A → B) ∧ (C → B) → (A ∨ C → B) 

  (A8)  A ∧ (B ∨ C) → A ∧ B ∨ A ∧ C 

  (A9)   ¬ ¬A → A 

  (A10)  (A → ¬B) → (B → ¬A) 

  (A11)  (A → B) ∧ (B → C) → (A → C) 

  (A12)  (∀x)P(x) → P(á) 

  (A13)  (∀x)(A → P(x)) → (A → (∀x)P(x)) *   

  (A14)  (∀x)(A ∨ P(x)) → (A ∨ (∀x)P(x)) * 

  (A16)  P(á) → (∃x)P(x) 

  (A17)  (∀x)(P(x) → A) → ((∃x)P(x) → A) * 

  (A18)  A ∧ (∃x)P(x) → (∃x)(P(x) ∧ A) * 

                                                  * [x not free in A] 

Rules: (R1)  �ϕ → ψ, �ϕ � �ψ  

  (R2) �ϕ, �ψ � �ϕ ∧ ψ 

  (R3) �ϕ → ψ, �γ → δ � � (ψ → γ) → (ϕ → δ) 

  (R4) �ϕ � �(∀x)ϕ 

Meta-Rules: (MR1) If �ϕ � �ψ then also �ϕ ∨ γ � �ψ ∨ γ 

   (MR2)  If �ϕ � �ψ then � (∃x)ϕ � � (∃x)ψ 

where in both meta-rules in the derivation �ϕ � �ψ (R4) does not 
generalize on a free variable in ϕ. 

Brady invented a semantics of content containment to avoid the unnatural 
possible worlds semantics common to Routley’s systems. The content of ϕ 
comprises everything that can be ‘analytically established’ from ϕ (i.e. with 
respect to the meaning of ϕ). Given the semantics of content containment 
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Brady has to use (EXTR), since the content of x = y seems not to contain 
x∈z ↔ y∈z. 

In fact Brady's theory is foremost a class theory (not a set theory). Brady 
distinguishes classes for which the two axioms hold and for which 
sentences dealing with them have a relevant logic from sets, whose 
membership sentences obey standard logic! The standard behaviour is 
needed to have enough countable sets in the classes. And not using “�” 
for sets keeps them extensional. The classes, however, are intensional and 
have other identity conditions than sets. Classes, which also comprehend 
sets, are thus in at least two respects quite different from sets.  Classes 
comprehend individuals, sets and classes having a property. Brady 
proposes several comprehension schema like 

 x�{yY | ϕ } ↔	ϕ x/y {yY|ϕϕϕϕ}/Y  

“y” being free for “x” and ϕ maybe having a free class variable thus 
speaking about its corresponding class itself. Classes are ‘logical’ 
collections, sets are arbitrarily formed well-founded collections. Because of 
their different logical behaviour the null set and the null class have to be 
different. Like in NBG some classes correspond to a set (are ‘classically 
identical’ to a set, cf. Brady 2006, p.183, 311). Not all properties built sets, 
only those with ‘classical membership statements’. The collection of well-
founded sets, for instance, cannot be a set itself. Brady’s theory thus 
consists of two parallel sub-theories: one for sets and one for classes. 
Ordered pairs are – like in NF – taken as primitive as well! Numbers are 
also distinct, since they are not reduced to sets! 

Brady has proved his system of set and class theory to be non-trivial and 
even consistent in the narrow sense of not �ϕ and �(�ϕ), but possibly 
�(ϕ ≡ �ϕ), on the condition that large parts of ZF are consistent. 

Brady's version of paraconsistent set theory does not contain all of the 
antinomies and ‘only’ keeps them from spreading triviality elsewhere. 
Some of the antinomies do not occur. In case of the Russell set one can 
prove R∈R ↔ R∉R. To get to the explicit contradiction R∈R ∧ R∉R once 
needs either the Law of the Excluded Middle or Negation Introduction. 
Both are absent in DJdQ. Thus given the validity of R∈R ↔ R∉R only one 
can chose to make them both true or both false. Something similar holds 
for Curry's Paradox, since Contraction does not hold in DJdQ. Brady 
works by rejecting Excluded Middle and claims that this is not ad hoc to 
avoid the antinomies like R�R �	R∉R. He argues, however (cf. Brady 
2006, pp.40-41), for the rejection of Excluded Middle by reduction starting 
from the observation that otherwise antinomies were provable. Comparing 
restricted comprehension (like Separation) or restricting negation (in giving 
up Excluded Middle) one may well argue that NEGATION is an even more 
central concept and not to be messed with lightly. In fact Brady rests his 
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case on his logic DJdQ in which Excluded Middle fails and negation is 
taken as an intensional connective/operation. The majority of logicians 
doubt that, as we seem to understand negation naturally in terms of truth, 
not meaning or content. Brady’s approach thus leads to the broader topic of 
negation, which cannot be taken up here. The burden of proof of building a 
viable set theory only by messing with the extensionality of negation rests 
with accounts like Brady’s. 

Since Brady distinguishes sets from classes he restricts the validity of 
Cantor's Theorem to sets, avoiding the antinomy that the powerset of the 
universal set has to be within the universal set and at the same time larger 
than the universal set. The sets are collected into a class (cf. p.301). After 
all Brady’s theory turns out to be similar to theories like MK or 
Ackermann’s set theory [cf. chapter II]. The collection of all sets is a class. 
Some classes are even within sets (are members), but these are only the 
classes corresponding ‘classically’ (i.e. in standard logic) to sets. Classes 
are not comprehended into a universal class of all classes. Brady’s theory 
thus does not make progress in comparison to those theories with respect to 
our quest for a truly universal collection of all collections, or at least a set 
of all sets. 

 

* 

 

One may try to gain both a paraconsistent treatment of antinomies and a 
substantial amount of ‘classical recapture’ by adopting an adaptive logic, 
extending it with the two basic set theoretical rules. Ideally the resulting set 
theoretical logic should combine the basic power and many of the results of 
straightforward paraconsistent set theories (like Routley’s or Brady’s) with 
a severe restriction on reasoning with or multiplying inconsistent objects. It 
should avoid classes. 

The base logic may be the adaptive version of LP (Priest’s so called 
“Minimal Inconsistent LP”, 1991) with standard quantificational extensions 
giving ALPQ (Adaptive LPQ). Since set theory needs identity one in fact 
needs ALPQ=. LPQ= however has a too weak concept of identity, so we 
need some restrictable but more powerful rule. 

We have to introduce some basic ideas of adaptivity first. Adaptive logics 
(and proofs) derive consequences from a premise set, but are adaptive in 
that they retract some consequences if their derivation crucially depended 
on the inconsistency of the premise set. 

Retracting in the process of reasoning from a premise set cannot be 
completely avoided, since there is no general algorithmic procedure (for 
just any logic) to test whether Γ or Γ ∪ {ϕ} is consistent. So we often 
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extend our premise set Γ by a new assumption on the supposition that this 
extension is consistent, although it sometimes turns out not to be. 
Especially if Γ
ϕ depends on Γ�ψ  and no negative test is available for 
Γ�ψ, then we have even no positive test for Γ
ϕ. (The derivability of ϕ 
may depend on the absence of ψ if say ψ states some exceptional condition 
on employing some rule to derive ϕ.) Retraction is of most interest with 
respect to internal dynamics, since given one and the same premise set the 
sentence ϕ may be derivable at some stage and retracted later. ϕ then might 
not belong to the final consequence set, but it appeared to during some 
stages of the reasoning process. An adaptive logic is characterized by two 
logics:  

(a) The Upper Limit Logic (ULL) allows for the unrestricted application of 
logical rules to derive the most consequences possible. Typically ULL 
is (standard) FOL;  

(b) The Lower Limit Logic (LLL) is chosen to model some type of 
restricted reasoning. In our case it is a paraconsistent logic, i.e. a logic 
that blocks the application of some rules of standard logic.  

The adaptive strategy is the way to handle the management of restrictions 
and the corresponding retractions. An adaptive logic generates a set of 
consequences of an (inconsistent) Π that can lie between ConLLL(Π) and 
ConULL(Π). The idea of adaptation is therefore: Think of some critical rules 
as applicable and make exceptions only if one of the premises is known to 
be inconsistent (or problematic in some other ways to be explained below). 
Since we do not know beforehand which premises are consistent, we may 
employ these rules incorrectly. That is why there is retraction. 

The application of that rule is retracted then. All consequences of that 
application are retracted as well. Given a premise set Γ one likes to know 
which of them may be abnormalities. Abnormalities here are, for instance, 
formulas of the form ϕ ∧ ¬ϕ. Some premise sets might be such that we 
know:  

(1) (A ∧ ¬A) ∨ (B ∧ ¬B)  

whereas neither disjunct is a consequence (so far). So maybe each of them 
or either “A” or “B” behaves abnormally. The abnormalities form a set ∆. 
“Dab(Π)” abbreviates the disjunction of (ϕ ∧ ¬ϕ) for all ϕ ∈ ∆. “Dab(Π)” 
then expresses that at least one of the premises in ∆ is abnormal. “Dab” 
means “disjunction of abnormalities”. We are looking for minimal Dab-
formulas (since the less disjuncts a Dab-formula has the more premises we 
have excluded as suspects). Besides the formulas appearing in a Dab-
formula there might be formulas which are already known as being 
abnormal.  

In general:   Γ 
LLL(ϕ ∨ Dab(Π))  iff  Γ 
ULL ϕ  
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Here Π contains the formulas on the consistency of which the application 
of some rules used in deriving ϕ depends. One can follow the Minimal 
Abnormality strategy, which with respect to (1), for example, assumes that 
once we consider the one abnormal we can take the other as normal (i.e., 
we can derive more consequences, since less exceptions are now 
operative). If at some later stage in a proof one can derive one of the 
disjuncts in (1) [in general in: Dab(Π)], then (1) [or Dab(Π)] is no longer 
minimal. So this Dab-formula is replaced by one stating that derived 
inconsistency. Retractions based on the supposed inconsistency of one of 
the other disjuncts are taken back then (by marking/unmarking lines in the 
proof, see below). 

Proofs look like Natural Deduction Proofs with a further column: 

n.<k,...> A Rule, m, l {B} 

We number the lines and include in "<  >" the premises a line depends on, 
then follows the formula, then a column naming the rule applied to get this 
line and the lines used in that application. The fifth column contains the set 
of formulas (possibly empty) on the consistency of which the derivability 
of the formula depends. These sets are called “conditions” (or 
“presuppositions”, see below). 

Conditions obey the following abstract rules: 

(RU) If ϕ1... ϕn 
LLL ψ, then from  ϕ1... ϕn on the conditions Π1 ... 
Πn derive ψ on the condition Π1 ∪ ... ∪ Πn . 

The rule (RU) concerns rules of Natural Deduction which do not require in 
LLL the consistency of the ingredient formulas. ψ just inherits the 
conditional dependencies. 

Rules requiring such consistency operate on 

 (RC)  If ϕ1... ϕn 
LLL(ψ  ∨ Dab(Πm), then from  ϕ1... ϕn on the   
  conditions Π1 ... Πn derive ψ on the condition Πm ∪ Π1 ∪ ... Πn  

In this case consistency assumptions for the formulas in Πm are added. The 
last line of a proof is the stage that the proof has arrived at. Now, if one of 
the formulas in the condition gets to be known as non fulfilling the 
essential criterion (here: consistency) the line is marked. The marking rule 
of the Minimal Abnormality strategy says roughly: If for ϕ ∈ Πi, ϕ occurs 
in some Dab-formula, then line i is not marked because of that Dab-formula 
if there is another disjunct of that Dab-formula which is taken as unreliable. 
Lines that depend on a marked line have inherited the condition by either 
(RU) or (RC) and are, therefore, marked as well. Depending on the strategy 
– or the premise set – a line can get unmarked later, even in case of the 
reliabilist strategy. 
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"< >" notes the assumptions a line depends on. We note the result of a 
(vertical) derivation in a (horizontal) formula by putting the assumptions 
mentioned in the dependency set of the last derived line on the left of "
". 

 1.<1>  A  PREM 

 2.<2>  A ⊃ B PREM 

 3.<1.2>  B  (⊃E) 1,2 

that is A, A⊃B 
 B. 

Instead of simply writing “(RU)”, “(RC)” the detailed rules are given here. 

1.<1>  ¬ A ∧ C PREM  ∅ 

2.<2>  B ⊃ A PREM  ∅ 

3.<3>  D ∨ ¬ C PREM  ∅ 

4.<4>   C ⊃ A PREM  ∅ 

5.<5>   A ∨ ¬ C PREM  ∅ 

6.<1>   ¬ A  ∧E, 1  ∅ (RU) 

7.<1>   C   ∧E, 1  ∅ (RU) 

8.<1,2>  ¬ B  Contraposition, 6, 2  {A}   (RC) marked at 10 

9.<1,3> D   ∨E, 3, 7   {C}     (RC) if marked at 10 unmarked at 11 

10.<1,5>  (¬ A ∧ A) ∨ (¬ C ∧ C) Dilemma, ∧I, 5, 6, 7  ∅  (RU) 

11.<1,4>  ¬ A ∧ A ⊃E, 4, 7 {C} (RC) 

In line 10 we get to know that at least one of “C” and “A” is inconsistent, 
so lines depending on them get marked. Given a Minimal Abnormality 
strategy or seeing in line 11 that “A” is inconsistent we can blame “A” for 
line 10 and unmark the lines depending on the consistency of “C”. The 
Dab-formula in 10 is no longer minimal after 11.  

Given the dynamic character of the proofs one has to distinguish: 
derivability at some stage and final derivability. ϕ is finally derived at line i 
of a proof at a stage s iff line i is unmarked at s, and whenever line i is 
marked in an extension of the proof, then there is a further extension in 
which line i is not marked. This property is (in most cases) not recursive. 
Even if final derivability is not recursive this resembles our actual 
reasoning where we (mostly) lack similar assurance against revision. There 
is nothing dynamic about final derivability. The relative derivability 
statements (i.e. those statements like 

 
((¬A∧C)∧(B⊃A)∧(D∨¬C)∧(A∨¬C)) ⊃ D given {°C}

expressing that something is derivable from a (empty) set of premises on 
the given set of presuppositions) are recursive enumerable. So one should 
not exaggerate the failure of enumerability of theorems! 
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We built the system for adaptive paraconsistent set theory by using the 
following ingredients: 

• an adaptive version of standard propositional calculus; 

• semantic and consistency operators  

• quantifier rules in the vain of Minimal Free Description Theory 
(allowing for the use of descriptions, including those that are non-
referring); 

• identity rules that restrict substitution to consistent objects; 

• rules for a stronger conditional, whether we really need this or not; 

• basic rules for modalities; 

• set theoretic rules/axioms. 

Semantic and consistency operators express within the language some of 
the semantic properties of sentences of the language.  

 

A ¬A TA FA ∆A ∇A °A •A 

0 1 0 1 0 1 1 0 

1 0 1 0 1 0 1 0 

0,1 0,1 1 1 0 0 0 1 

 

These operators express: true, false, true only, false only, non-
contradictory, contradictory. 

We call the system resulting from these logical rules with added set 
theoretical rules APS (Adaptive Paraconsistent Set Theory). 

A line that reads 

  n.< >  A 

contains a theorem, since the sentence “A” does not depend on any 
assumption (the dependency set noted within “< >” is empty).  

Theorems can be introduced into derivations at any time.  

[Letters “n”, “m” etc. are used to refer to unspecified line numbers. 
Remember: “A” is an abbreviation, the object language having really 
sentences like “x�y”, “Ordinal(ω)” etc.] 

To include PC-tautologies, which we know already, we have the rule: 

 (PC) n.< > A PC  ∅ 

where “A” is any PC-theorem. The column with markings is empty. 

For any other theorems (i.e. already proven APS-theorems) we have: 
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 (TH) n.< > A TH  Γ  

where “A” is any APS-theorem. Γ contains the presuppositions. There 
cannot be a list of marked individual constants in theorems. 

To introduce assumptions into a derivation we have the rule: 

 (AE) n.<n>  A AE  {sat(A)} 

where we define satisfiability presuppositions by the schema 

 (sat) sat(A) ≡ ¬((∆A ∧ FA) ∨ (∇A ∧ TA) ∨ (•A ∧ °A)) 

In case the presupposition later turns out to be violated lines depending on 
the assumption in question have to be retracted (as always). The 
satisfiability presupposition has to be made because the definition of APS-
consequences excludes the cases in which the premise set is unsatisfiable 
[see below]. Typically assumption in arguments need not be considered 
really true, but satisfiable at least. 

 

Conjunction Introduction has the form: 

 n.<m> A  ...   Γ 
 o.<k>  B  ...   Λ 
 p.<m,k> A ∧ B  (∧I) n, o  Γ ∪ Λ   

 

Conjunction Elimination has the two forms42: 

 n.<m> A ∧ B  ...  Γ 
 o.<m> A  (∧E) n Γ 
 n.<m> A ∧ B  ...  Γ 
 o.<m> B  (∧E) n Γ 

 
Disjunction Introduction has the two forms: 

 n.<m> A  ...   Γ 
 o.<m> A ∨ B  (∨I) n   Γ 
  n.<m> A  ...   Γ 
 o.<m> B ∨ A  (∨I) n   Γ 

 

                                                
42  Here and in the following rules "<m>" refers to an unspecific (number) of 
assumptions that the line depends on. Γ can, of course, be empty; if there are marked 
individual constants they are marked only in the line where the quantificational rule is 
employed, see below. 
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Disjunction Elimination has the form: 

 n.<m> A ∨ B  ...   Γ 
 o.<k>  ¬A  ...   Λ  
 p.<m,k> B  (∨E) n,o Γ ∪ Λ ∪ {°A} 

 
This is the restricted form of Disjunctive Syllogism. 

Negation Introduction has the form: 

 n.<n>  A AE   ∅  
 o.<m,n> ¬A  ...   Γ 
 p.<m> ¬A (¬I) n,o Γ 

If some assumption allows deriving its own negation, then this sentence 
can be stated negated simpliciter (i.e. the status as assumption is 
discharged, as indicated by the underlining in the line using (¬I)).  The 
usual form of Negation Introduction leads to trivialization in inconsistent 
contexts, and thus cannot be adopted here. 

Negation Elimination has the form: 

 n.<m> ¬¬A  ...  Γ 
 o.<m> A  (¬E) n  Γ  
 

Conditional Introduction (Conditionalization) has the form: 

 n.<n>  A  AE   ∅  
 o.<m,n> B   ...   Γ 
 p.<m> A ⊃ B (⊃I) n,o Γ 

 
This rule mirrors the Deduction Theorem. If the conditionalization is the 
last step of a derivation the restrictions on not having marked individual 
constants in it have to be kept. 

Conditional Elimination (Modus Ponens) has the form: 

 n.<m> A ⊃ B  ...  Γ 
 o.<k>  A  ...   Λ 
 p.<m,k> B  (⊃E) n,o Γ ∪ Λ ∪ {°A}  

 
This is the restricted form of Modus Ponens.  

Truth Introduction/Elimination follow the disquotational (T)-schema.43  
Strict Falsity will be a defined notion. The Inconsistency operator is treated 
by rules as well. 

                                                
43  One may doubt that the operator “T” thus can correspond to “is true” in a 
substantial and especially in an (mildly) epistemic conception of truth, which does not 
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Truth Introduction has the form: 

 n.<m>  A ...   Γ  
 o.<m>  TA  (TI) n   Γ 

 

Truth Elimination is the converse: 

 n.<m>  TA ...   Γ  
 o.<m>  A  (TE) n Γ 

 

Falsity Introduction has the form: 

 n.<m>  ¬A ...   Γ  
 o.<m>  FA  (FI) n   Γ 

 

Falsity Elimination is the converse: 

 n.<m>  FA ...   Γ  
 o.<m>  ¬A  (FE) n  Γ 

 

Inconsistency Introduction has the form: 

 n.<m>  A ∧ ¬A ...   Γ  
 o.<m>  •A   (•I) n   Γ 

 

Inconsistency Elimination is the converse: 

 n.<m>  •A   ...  Γ  
 o.<m>  A ∧ ¬A ∧ ¬°A  (•E) n   Γ 

 
For strict truth we introduce its version of Convention (T): 

 n.<>  ∆A ≡ A  (∆)  ∅ 

 

Necessity Introduction (Necessitation) has the form: 

 n.< >  A ...   Γ  
 o.< >  �A  (�I) n Γ 

 
A theorem (but not any sentence depending on further assumptions) can be 
necessitated.  

                                                                                                                                                   
validate ϕ ⊃ Tϕ. With respect to the evaluation of formula there is, however, this 
operator, and it serves sometimes the function of “is true”. 
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Necessity Elimination has the form: 

 n.<m>  �A  ...   Γ 
 o.<m>  A ...    Γ 

 

Since necessity is taken here to be semantic necessity (not natural necessity 
or some more restricted version of necessity) it has to be governed in the 
way of a normal modal logic of the strength of modal system S5. Therefore 
we need two further rules: 

The rule corresponding to the K-Axiom of modal logic has the form: 

 n.<m>  �(A ⊃ B)  ...   Γ  
 o.<k >  �A ⊃ �B  (K) n,o Γ 

The rule corresponding to the S5-Axiom has the form: 

 n.<m>  �A   ...   Γ 
 o.<m>  ��A  (S5) n   Γ 

Taking entailment to be semantic entailment in the sense that:  

  A  B  �(A ⊃ B) 

gives us derived introduction and elimination rules for “ ”. 

Entailment Introduction is a strict form of Conditionalization: 

 n.<n>  A  AE   ∅ 
 o.<o>  B  AE   ∅ 
 … 
 r.<n,o> C  ...   Γ 
 s.< >       A ∧ B  C ( I) n,o,r  Γ 

 
In strict conditionalization all assumptions have to be conditionalized (thus 
we get a theorem to be necessitated to yield the entailment).  

Entailment Elimination is a version of Modus Ponens: 

 n.<m> A  C  ...   Γ 
 o.<k>  A  ...   Λ 
 p.<m,k> C  (→E) n,o  Γ ∪ Λ ∪ {°A}  

We introduce some further connectives by definitions. There are derivable 
introduction and elimination rules then. Within a derivation we use the 
definitions by referring to their name:  

 (D≡)  A ≡ B  (A ⊃ B) ∧ (B ⊃ A) 

 (D )  A  B  (A  B) ∧ (B  A) 

 (D�)   �A  ¬�¬A 

 (D∇)   ∇A  ∆¬A 
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 (D°)  °A := ∆A ∨ ∇A    

We have to give the usual requirements on marking individual terms in 
case of applying Universal Generalization or Existential Specialization 
within a derivation. These are: 

• Terms generalized in Universal Generalization and specialized to in 
Existential Specialization are marked at the right of such a line; 

• The marking also notes the dependencies on other individual terms 
in that line (in the form “a(e)”: “a” being marked depended on “e”); 

• Markings may not be circular (i.e. we do not have “a(e)” and “e(a)”); 

• No term may be marked twice; 

• Marked terms may neither occur in the premises, presuppositions nor 
in the conclusion of a supposed valid derivation. 

In applications of the quantifier rules one also has to meet the requirement 
that by generalising one constant to a variable “x”, “x” will not be bound 
by already present quantifiers. (∀I) and (∃I) require further on that “x” and 
the individual term occur at exactly the same places in a given sentence. 

E!(á) says that the object denoted by á exists, “E!( )”, being the existence 
predicate, is a logical constant. Quantifiers refer to existing objects only.44 
We assume that there is something: 

Axiom of Existence 

 n.< >  (∃x)E!(x) (E!)    ∅ 

Identity Introduction is valid for any object, existing or not: 

 n.< >  a = a  (=I)   ∅  

Identity Elimination (i.e. substitution of identicals) is more critical. It has to 
be restricted to avoid trivilization in a paraconsistent logic with as much 

                                                
44   Semantically speaking the extension of  “E!( )” is the domain at a world index. As 
we are dealing with sets anyway worlds may be taken as sets containing set 
theoretically modelled facts or states of affairs. Whether one admits possibilia or not is 
a question to be discussed apart from set theoretical assumptions. [There are several 
techniques to avoid a commitment to possibilia in one’s semantics. For the non-modal 
case one may take the interpretation function I on terms to be partial: If I is defined for 
α, ||α|| is in the domain, “E!(α)” is true, if I is not defined for α. “E!(α)” is false; I 
interprets P(á) for any general term and any singular as true, false or both; complex 
statements have their usual recursive truth conditions (like in LP); variable assignments 
run over the domain, thus providing the usual (paraconsistent) quantificational 
semantics, even if there are objects without names; for any term α “α = α” is true, if I is 
defined on both α and γ, the usual truth condition for “=” applies, otherwise a value 
may be assigned at random. In the modal case modal expressions have their usual truth 
conditions (like in S5), possibilia can then only be avoided by some construction of an 
‘outer domain’ of terms and some ‘ersatzist’ construction involving instantiating terms.] 



PARACONSISTENT SET THEORIES WITH UNIVERSAL SET 

 74  

expressive power as APS. We have to presuppose that some object is not 
an inconsistent object to apply (=E) to it. We define a consistency predicate 
“K( )” for objects (as a logical constant, of course) to do this: 

 (DK) K(á)  ¬(∃P)(P(á) ∧ ¬P(á)) 

APS is no 2nd order system, but we may employ (DK) in that we note K(á) 
in the presupposition list of some line if for the object named á we should 
not have a line with an instance of the scheme: P(á) ∧ ¬P(á). A line with 
K(á) presupposed will be retracted once we derive P(á) ∧ ¬P(á) for some 
predicate. 

 

Identity Elimination then takes the form: 

 n.<m> P(á)  ...   Γ  
 o.<k>  á = é  ...   Λ 
 p.<m,k> P(é)  (=E) n,o  Γ ∪ Λ ∪ {K(é)}  
This restriction may block deriving theorems concerning inconsistent sets, 
like the restriction on (�E) blocks theorems concerning contradictions. 
Should we bother? We need not believe that inconsistent sets are like 
consistent sets. After all the point of APS may be seen to rest in dealing 
with lurking inconsistent sets in an attempt to have a most naïve set theory 
for consistent sets (i.e. one with unrestricted Comprehension and U). It is 
not obvious that ZFC-like axioms should apply to inconsistent sets. It is 
not obvious - in fact it may be doubted – that our concept set applies in full 
generality to inconsistent sets. APS can handle inconsistent sets if there are 
any. If it turned out that none can be shown to exist (by restrictions on 
proofs like restricting detachment in Naïve Comprehension to consistent set 
defining formula) so the better, we may presume [see below on the Russell 
Set]. The priority with APS lays on realizing a naïve set theory for 
consistent sets. 

Since we want to use description and modal operators we have to provide 
(=E) with a provisio in case descriptions are involved. In modal logic S5 all 
modalities can be reduced to modalities of degree 1. We require as a 
provisio for Identity Elimination: 

In case we have á = é, then: 

if á is a description and é an individual constant, é cannot be 
substituted into a modal context of “�”, 

if á is an individual constant and é a description, é cannot be 
substituted into a modal context of “�”. 

The following quantifier rules require following the rules of marking the 
constant generalized/specialized in (∀I) and  (∃E), and the renaming of 
variables mentioned before.  
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∀-Introduction (Universal Generalization) has the form: 

 n.<m>  R(á,é)  ...  Γ 
 o.<m>  (∀x)R(x,é) (∀I),n  Γ ∪ {E!(á)}   á(é)  

Thus the application of (∀I) requires an existence assumption concerning á, 
since we conclude to a generalization about all existing objects. á is 
marked, here as depending on é. 

∀-Elimination (Universal Instantiation) has the form: 

 n.<m>  (∀x)P(x)  ...   Γ 
 o.<m>  P(é)  (∀E),n Γ ∪ {E!(é)} 

 
Since the generalization is (maybe) true of existing objects only the 
application of (∀E) presupposes that the constant specialized to names an 
existing object. 

∃-Introduction (Existential Generalization) has the form: 

 n.<m>  P(á)  ...  Γ 
 o.<m>  (∃x)P(x) (∃I),n  Γ ∪ {E!(á)}  

Thus the application of (∃I) requires an existence assumption concerning á, 
since we conclude to a generalization about some existing objects.  

∃-Elimination (Existential Instantiation) has the form: 

 n.<m>  (∃x)R(x,á)  ...   Γ 
 o.<m>  R(é,á)  (∃E),n Γ ∪ {E!(é)}  é(á)  

Since the generalization is (maybe) true of existing objects only the 
application of (∃E) presupposes that the constant specialized to names an 
existing object. The name of the object is marked in its dependencies in the 
formula in question.  

In case that existence assumptions are explicitly made the existence 
presupposition can be cancelled: 

 n.<m> P(á)  ...  Γ ∪ {E!(á)} 

 o.<o>  E!(á)  AE 

q.<m,o> P(á)  (E!C),n,o Γ   

If the existence claim follows from the other assumptions the 
presupposition can be cancelled as well: 

n.<m>  P(á)  ...  Γ ∪ {E!(á)} 

o.<m>  E!(á)  …   Γ ∪ {E!(á)} 

q.<m>  P(á)  (E!C),n,o Γ   
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Minimal Free Description Theory requires the uniqueness of a description 
with respect to the existing objects only. Otherwise it looks like the 
standard Russellian account of descriptions. We use the usual “ι”-notation, 
so that “ιxF(x)” means “the (unique) F”. 

The (MFD)-rule can be stated as the following two ways of term 
interchangability: 

n.<m>  ιxP(x) = á     ...  Γ 

 o.<m> (∀y)(á=y ≡ P(y) ∧ (∀z)(P(z) ⊃ z=y)   (MFD),n Γ 

 n.<m>  (∀y)(á=y ≡ P(y) ∧ (∀z)(P(z) ⊃ z=y)  ...   Γ 

 o.<m>  ιxP(x) = á      (MFD),n Γ 

 
The first conjunct in the equivalence states satisfaction of the defining 
property, the second expresses uniqueness. 

In the context of quantificational rules we can now make clear the 
reference to a set of presuppositions above. Adaptive Logics speak of Dab-
formula and corresponding sets of consistency assumptions. APS notes 
these consistency assumptions as presuppositions to employ some 
restricted rules. Actually the consistency presupposition is "°A". In 
Minimal Free Description Theory usually a conjunct "E!(a)" is needed (e.g. 
as derivable line or assumption) to employ one of the quantifier rules. Since 
APS is a dynamic logic already we need not work with "E!(a)" as a line in 
a derivation, but can note this also as a presupposition in the presupposition 
set Γ noted on the right. In case of Identity Elimination the presupposition 
is that we have a consistent object. We note this as the presupposition 
“K(a)” for an object a in question. Each of the sentences in the 
presupposition set has a negation. Once the negation of such a 
presupposition can be derived, all lines are retracted which depend on that 
presupposition (like in the original adaptive dynamics). The retraction thus 
does not only concern the disappointment of consistency assumptions 
(either for a sentence or an object), but also the disappointment of existence 
presuppositions. If the last line ϕ of a derivation has a non-empty 
presupposition set Γ, this means that the sentence in that line is derivable 
from the assumptions noted within “< >” given these further 
presuppositions. 

Let Φ be the (possibly empty) set of assumptions and Γ the (possibly 
empty) set of presuppositions in a derivation of ϕ.  

We have:  

 ¬(∃ψ∈Γ) Φ|APS ¬ψ � Φ|APS ϕ  
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To save labour and have derivation looking more closely like standard 
derivations we adopt the convention to drop noting Γ if Γ is empty.45  

The relative derivability statements, i.e. those statements like 

  
APSG(ιxF(x)) ⊃ (a = ιxF(x) ⊃ G(a))  given {K(a)} 

expressing that something is derivable from a (empty) set of premises on 
the given set of presuppositions, are recursive enumerable. Noting 
presuppositions explicitly clutters derivability statements, one may 
complain. This is due, however, on the universal employability of APS. 
Standard logics have all these caveats implicitly understood as they 
presuppose a well-behaved restricted area of applications. 

 

Consequence in APS may be defined:  

(�1) Γ �APS ϕ     iff   
in case that all ψ∈Γ are true at least, then ϕ is true at least. 

Nothing needs to be said concerning the case that any ψ∈Γ is false only. 
One has not to hold that then a consequence relationship holds. To do so 
would endorse non-relevant inferences.  

To do so may come close to reintroducing ex contradictione quodlibet, as 
well. ∆A and ∇A are incompatible, so both can never be true at the same 
time, so allowing for Irrelevant consequences would yield, for example:  

 (*2) ∇A, TA �APS C 

for any C. 

To insist that the “in case” has to be read as material implication as in PC 
just begs the questions against a relevant meta-theory! 

An improved relevant definition of consequence in APS might be: 

 (�2)   Γ�APS ϕ  iff  there are models such that all ψ∈Γ are true at 
least, and in case that all ψ∈Γ are true at least in a model, then ϕ is 
true at least in that model. 

The existence condition rules out the Irrelevant cases and (*2).  
A consequence relation obtains if and only if all of the non-empty set of 
models that make the premises at least true make the consequence at least 
true. What models are has to be explained in our universal system APS 
itself. 
As always � concerns the inheritance of truth. The second version, (�2), 
requires some reworking of the proof theory. 

                                                
45  It may also be convenient to leave most presuppositions, especially satisfiability 
presuppositions, as being understood and return to them only in case of cancellation of 
lines. For the sake of getting to see all the presuppositions or to accustom to the 
adaptive procedures it may be useful to write them down for a while. 
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Changing the definition of consequence this way requires a further book 
keeping of presuppositions, in this case with respect to assumptions. 

In as much as APS has to be correct the basic rules must not support 
consequence claims that go against the definition above. Making an 
unsatisfiable assumption, however, would allow claims like 

 (*3)   ∇A ∧ TA �APS ∇A ∧ TA 

(*4)   ∇A ∧ TA �APS ∇A 

where the premise (set) is unsatisfiable and thus the claims are supposedly 
incorrect. If we consider these claims as incorrect – and not just non-
relevant – then the first definition of consequence is in trouble, since 
conjunction elimination would allow to derive (*4). The proof theory 
allows to derive something that is not – strictly speaking – a violation of 
the definition of consequence given thus, but only because we deem it non-
relevant (the case of the assumption on the left being at least true just does 
not arise, thus it cannot violate the condition). This line of reasoning, 
however, leads to accepting (*2) as not incorrect! And this may be too 
much, even if (*2) is not accepted as valid. Still the first definition may be 
an option given a clear understanding of RELEVANCE. Being silent on (*2) 
as neither correct not incorrect, however, violates the otherwise assumed 
tertium non datur, and the meta-theory should not work with another logic 
than the logic, since a truly universal logic can be used as its own meta-
logic. 

Clearly, however, the solution for this first option’s trouble is straight 
forward, given the second definition: assumptions (i.e. claims to be 
considered for further consequences) are presupposed not to be true, but to 
be satisfiable. In a paraconsistent semantics even contradictions ϕ��ϕ can 
be satisfiable. 

When applying the assumption rule (AE) we have to use the form 

 n.<n>  A AE sat({A}) 

where we define the satisfiability presuppositions by the schema 

(sat)   sat(�) ≡ � has a APS-model where all ϕ∈Γ are true at least 

� being a set of assumptions. The set of assumptions � has to be jointly 
satisfiable. With sat({A}) we note only the satisfiability of an individual 
assumption. If a line depends on several assumptions, the further 
assumptions entering into its derivation also have to enter the set the 
satisfiability of which is presupposed. The presupposition of satisfiability is 
cancelled when � contains or entails for some A either  

(i)  TA ∧ ∇A or  

(ii)  ∇A ∧ �A or  
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(iii)  �A ∧ FA or  

(iv)  (•A ∧ °A) 

These sentences are beyond contradictions like ϕ��ϕ in not being 
satisfiable even in a paraconsistent semantics for APS.  

In case the presupposition later turns out to be violated lines depending on 
the assumption in question have to be retracted (as always). In a universal 
logic like APS were the distinction between object and meta-language is 
superseded by the idea of semantic closure we naturally have semantic 
properties (like satisfiability) enter into the syntactic properties of a 
derivation. 

Since we generally have to presuppose the satisfiability of the set of 
assumptions which a line depends on, we may use the convention of not 
especially noting this in ordinary cases, but proceed according to a revision 
rule that all lines depending on an assumption that turned out to be 
unsatisfiable have to be taken back. In fact the additional entry “sat(A)” for 
some premise “A” is redundant in our derivations as we note the 
dependencies in the second column. We just have to recognize that all 
premises mentioned in the second column have to be satisfiable. This is 
different with the other presuppositions, as, for instance, not all premises 
have to be consistent. 

The relative derivability statements with respect to logical consequence 
(i.e. derivability from a set of assumptions) now carry the presupposition 
that the assumptions/premises are satisfiable (in the defined sense above): 

 A ∧ B 
APS A  given sat{(A ∧ B)} 

expressing that something is derivable from a satisfiable set of premises. So 
in the next few examples the “sat” is used, but it can be dropped for more 
convenient representation. More generally one could say that in a claim 
like ϕ�ψ
APS ϕ it is meant that in case of ϕ�ψ being satisfiable ϕ is 
derivable. Here ϕ�ψ
APS ϕ is a general schema, but one need not be 
committed to every instance of ϕ�ψ providing a true statement of 
derivability ϕ�ψ
APS ϕ as in case of (*4). 

 

Examples of APS-derivations: 

 

1.<1> G(ιxF(x))     AE {sat(G(ιxF(x)))} 
2.<2>  a = ιxF(x)     AE {sat(a = ιxF(x))} 
3.<1,2> G(a)      (=E) {K(a),sat(1),sat(2) } 
4.<1>  a = ιxF(x) ⊃ G(a)    (⊃I)2,3  {K(a),sat(1)} 
5.<> G(ιxF(x)) ⊃ (a = ιxF(x) ⊃ G(a))  (⊃I)1,4  {K(a)} 
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1.<1> a = ιxF(x)     AE  {sat(1)} 
2.<1> (∀y)(a=y ≡ F(y) ∧ (∀z)(F(z) ⊃ z=y)  MFD,1 {sat(1)} 
3.<1> a=a ≡ F(a) ∧ (∀z)(F(z) ⊃ z=a)   (∀E)2  {E!(a),sat(1)} 
4.<> a=a      (=I)  ∅ 
5.<1> F(a) ∧ (∀z)(F(z) ⊃ z=a)  (⊃E)3,4 {E!(a),°(a=a),sat(1)} 
6.<1> F(a)     (∧E)5  {E!(a),°(a=a),sat(1)} 
7.<1> (∃x)F(x)    (∃E)6  {E!(a),°(a=a),sat(1)} 
8.<> a = ιxF(x) ⊃ (∃x)F(x)  (⊃E)1,7 {E!(a),°(a=a)} 

 

1.<1> A    AE  {sat(1)} 
2.<> A ⊃ ¬ ¬ A  PC  ∅ 
3.<1> ¬ ¬ A  (⊃E)1,2 {°A,sat(1)} 
4.<4> ¬A ∨ B  AE  {sat(4)} 
5.<1,4> B   (∨E)3,4 {°A,° ¬ ¬A,sat(1),sat(4)} 
6.<4> A ⊃ B  (⊃I)1,5 {°A,° ¬ ¬A,sat(4)} 
7.<> (¬A ∨ B) ⊃ (A ⊃ B) (⊃I)2,6 {°A,° ¬ ¬A} 
 

1.<> �¬A ⊃ ��¬A  (S5)(⊃I) ∅ 
2.<> ¬��¬A ⊃ ¬�¬A     (PC)(⊃E)1 {°(�¬A ⊃ ��¬A)} 
3.<>  ��A ⊃ �A   (D�)2 {°(�¬A ⊃ ��¬A)} 
4.<>   �A ⊃ ��A   (TH)  ∅ 
5.<>   �A ⊃ ��A   (⊃E)(⊃I)3,4 {°�A,°(�¬A⊃��¬A)} 
6.<6>  �A    AE  {sat(6)} 
7.<6>  A    (�E)6 {sat(6)} 
8.<6>  A ∨ B    (∨I)7  {sat(6)} 
9.< >  �A ⊃ A ∨ B   (⊃I)6,8 ∅ 
10.< >  � (�A ⊃ A ∨ B )  (�I)9  ∅ 
11.<>  ��A ⊃ �(A ∨ B ) (K)10  ∅ 
12.<>  �A ⊃ �(A ∨ B )   (⊃E)(⊃I) 5,11{°�A,°(�¬A⊃��¬A)} 

 

We add to the constants of our language the expression “Set( )” with its 
obvious intended meaning, as well as the usual set theoretical symbols like 
curly brackets, “∈”, “⊆” etc. and “|” to express set abstracts like {x | P(x)}. 
Set abstracts are terms in the language.  

We have to add the usual definitions like: 

  (D⊆2) a ⊆ b   Set(a)�Set(b)�(∀x)(x∈a ⊃ x∈b)  

  (D< >) <a,b> {{a},{a,b}} 

Thus “∈” is taken as primitive.  
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As APS deals not only with sets, but also ordinary objects, we need a set 
predicate “Set( )” to sort out the empty cases when using set principles with 
non-sets. Since in the intended interpretation x ∈ y will be false if y is not a 
set, we have to avoid all the counterintuitive consequences of irrelevant 
conditionals (e.g., (∀x,y)(x∈a ≡ y∈b) is true for any individuals a and b 
without these being identical).  

We use an introduction rule for some of these cases: 

 n.<o>  á = {x | P(x)}   …   Γ 

 m.<o> Set(á)�(�x)(P(x) ≡	x�á) (Set),n Γ 

We define the universal set U, as we have done here all the time: 

 (DU)  U  {x | x = x} 

Since we cannot exclude inconsistent objects like a with a ≠ a, it is no 
option to define ∅ as {x | x ≠ x}!  

A better idea is: 

 (D∅)   ∅  {x | x ∉ U} 

Thus U is truly universal. 

Extensionality of sets can be added as a rule to introduce identity of sets.  

 n.<k>  Set(a) ∧ Set(b) ∧ (∀x,y)(x∈a ≡ y∈b) …  Γ  
 m.<k> a = b         (Ext),n Γ 
 

Substitution doing the rest for consistent sets, since both sides of  "∈" are 
open for substitution.  

Naïve Comprehension is added as rule/axiom schema using the material 
conditional: 

 n.< >  (∃y)(Set(y) ∧ (∀x)(x∈y ≡ P(x))) (NC)  ∅ 

with no further restrictions. (NC) immediately gives us the existence of ∅ 
and U. With (NC), (D⊆) and (Ext) we get: 

• unordered pairs {x,y} by v�w ≡ v=x � v=y 

• ordered pairs, then abbreviated as <x,y> 

• singletons, {x} = {y | y = x} 

and so forth. Also by (SET) we immediately have: x�{y| y = x} = {x}. 

 

Given the restrictions on detachment in APS, however, may forbid or 
retract the application of detachment here. Consider, for example, the 
inconsistent object a with a ≠ a. We have 
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 1.< > a ∈ U  ≡ a = a (NC), (DU), (∀E)  ∅ 

 2.< > a ∈ U   (≡E), (=I), 1 {°a=a} 

 3.<3> a ≠ a   AE   ∅  

 4.<3> a ≠ a ∧ a = a  (∧E), (=I), 3  ∅  

Now, given (4) “a = a” obviously isn't consistent, so (2) has to be retracted! 
That, of course, does not mean that a ∉ U. 

For the Russell Set we have by (NC): (�y)(Set(y)�(�x)(x�y ≡ x∉x)); 
naming the set {x| x∉x} “R” we get by Set “Set(R)” and then by (NC) and 
(�E): (�x)(x�R ≡ x∉x). So by (�E): R�R ≡ R∉R. We cannot get “R�R 
� R∉R”, however, as (�E) requires a consistent antecedent and “R�R” 
turns out to be inconsistent. So we have introduced the set {x| x∉x} but 
have not derived the contradiction showing it to be inconsistent. This may 
be a case of incompleteness for APS: We cannot show all the properties of 
inconsistent sets. On the other hand – why should we bother? Only if we 
assume R to exist as inconsistent set, can we declare APS incomplete, 
supposing, of course, there being no other proof of “R�R � R∉R”. The 
issue here concerns only those interested in knowing the structure of 
inconsistent objects, as some dialetheist might be. They had to come up 
with a better system which does what APS does for consistent sets, but can 
also additionally treat more completely of inconsistent sets. Dealing with 
universality APS suffices. 

 

We may allow shorthand expressions for functions: ƒ, ƒ’… As we can say: 

(Dƒ) Function(ƒ)  Set(ƒ) � (�y)(y�ƒ�(�v,w)(y=<v,w>)) � 
(�y,y’)(y�ƒ � y’�ƒ � (�v,w,w’)(y=<v,w>�y’=<v,w’>) � 
y=y’) 

We define an injective function by: 

(DInjective) Injective(ƒ)  (�x,y)(Set(x)�Set(y)� (�u,u’,v)(u�x � 
u’�x � v�y � <u,v>�ƒ � <u’,v>�ƒ � u = u’) 

Powerset is defined in the usual way by: 

 (D℘)  ℘(a)  {x | x ⊆ a} 

And by (NC) we get for some set w: 

 (�y)(Set(y) � (�x)(x�y ≡ x ⊆ w) 

Generalizing on w provides the Powerset Axiom. 

We can define cardinality comparison |a| ≤ |b| now by 

 (D≤)  |a| ≤ |b|  (�ƒ)(�x�a)(�y�b)(ƒ(x)=b � Injective(ƒ)) 

“>” for cardinalities has then the obvious definition: 
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 (D>)  |a| > |b| �|a| ≤ |b|  

We reason now: 

 1.< > ℘(U) = {x | x ⊆ U}  (D℘),(NC) 

 2.< >  Set(℘(U)) � ℘(U)⊆U  (Set),(DU),(D⊆), 1 

 3.< > Injective({<x,y>| x = y})  (DInjective),(Ext),(NC) 

 4.< > (�ƒ)(�x�℘(U))(�y�U)(ƒ(x)=y � Injective(ƒ)) (�I),(D⊆),2,3 

 5.< > |℘(U)| ≤ |U|    (D≤),4 

 6.< > (�x)(Set(x) � |℘(x)| ≤ |x|) (�I),(Set),5 

 7.< > (�x)(Set(x) � �|℘(x)| > |x|) (D>),6 

 8.< > �(�x) (Set(x) � |℘(x)| > |x|) (��), 7 

where the last line, (TP1), is the negation of Cantor’s Theorem. The usual 
indirect proof of Cantor’s Theorem does not work in APS (like in many if 
not all paraconsistent logics). If there was another proof Cantor’s 
Theorem would come out as an antinomy! 

We can continue and observe: for a set x there exists by (NC) ƒ:x→℘(x) 
defined as {z | (�y�x)z = <y,{y}>}, the singleton map of the set x. By 
reasoning like the proof just considered we can arrive at:  

10.< > |U| ≤ |℘(U)| 

(5) and (10) combined with the Cantor-Bernstein Theorem 

 (CBT) |a| ≤ |b| � |b| ≤ |a| �	|a| = |b| 

prove  

 11.< > |U| = |℘(U)|  (�I),(�E),5,10,(CBT) {°((5)�(10))} 

which contrasts nicely with NF/U.46 

Because the singleton map exists, we can prove: 

 (TP2)  (�x)(|x| ≤ |℘1(x)|) 

And since ∅�℘(x) for any set x, ℘1(x) ⊂ ℘(x) for any set x, so for finite 
sets we have:  

 (TP3)  (�x)(|x| < ℵ0 � |x| < |℘(x)|) 

Without Cantor’s Theorem to generate higher cardinalities the APS-
universe might be rather flat than \/-shaped. 

 

APS contains non-referring singular terms, using a name does not imply 
that the named object does exist. Singular terms naming sets – including set 

                                                
46  The Cantor-Bernstein Theorem can be proven directly, so the standard proofs are 
available in APS. 
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abstracts! – thus need not refer by just being singular terms. In principle 
there would therefore be the option for non-existent sets being around. 
These may one remind of Quine's ‘virtual sets’ [cf. Chap. III]. Virtual sets, 
with Quine, are set abstracts which are not quantified over, thus not being 
said to exist. APS could provide a place for such virtualities. 

On the other hand (NC) just declares that any set whatsoever (i.e. any set 
defined by a set abstract) exists.  

One may consider whether the introduction of a second set of quantifiers 
(quantifying over possibilia or virtualities as well) might be useful, using a 
quantifier with no existential impact in (NC). Apart from the problems of 
an ontology of virtualities this seems, to me, to be against the spirit of 
Naïve Comprehension, the very point of which seems to be that there 
(really) is a set to each defining condition.  

Unrestricted (NC) gives us 

  (�y)(�x)(x�y ≡ x = y) 

i.e. a set y = {y}. y is its own singleton, thus finite. We have: 

 (T) There are finite self-membered sets. 

This supposedly obvious observation is interesting as is has been 
conjectured for NF that any self-membered set in NF has to be infinite. 

All the ordinals are members of 

Ω = {x | x is the order-type of a well-ordered set} 

Where, as usual, {<x,R> | <x,R> is isomorphic to <y,R’>} = o is the order-
type of <y,R’> with <y,R’> being the set y with R’ well-ordering y. Ω is 
not just self-membered, but contains all its own ordinal successors! Ω 
contains all well-orderings, and for all (infinite, pure) sets there is a well-
ordering in Ω as (NC) provides for each (infinite, pure) set a choice 
function, which can be employed to order the set. Finite sets can be well-
ordered any way by counting. Uncountable infinite sets with urelements 
(i.e. non-sets) may be well-ordered by first ordering the finitely many 
urelements and then well-ordering the rest of the set. 

All in APS seems to be a most comprehensive system for paraconsistent 
reasoning including reasoning about sets, recapturing standard theorems for 
consistent contexts and entities.47 

                                                
47  (Dunn 1988) showed a somewhat disturbing result for non-classical logic and thus 
for non-classical set theory: If one combines a couple of basic and innocent principles 
for the classical connectives and for the consequence relation (like transitivity) with 
second order quantification and conversion principles (for a λ-calculus like abstraction) 
then the resulting logic (i.e. the set of theorems generated) is an extension of (standard) 
SOL. This means that the full strength – and paradox yielding power – of classical 
reasoning (including Disjunctive Syllogism …) is regained. The systems by Routley 
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* 

 

Paraconsistent set theory is not only of interest in itself or as formalization 
of naive set theory. It also may serve as the foundation of paraconsistent 
arithmetic. It has to be checked what remains of standard mathematics once 
its foundations in set theory have been restricted to paraconsistent set 
theories! 

Do we need paraconsistency for set theory? 

If the justification for a paraconsistent set theory depends on avoiding the 
antinomies, others approaches that avoid the antinomies might be 
alternatives. Provided they are more natural or coherent that the 
paraconsistent systems. 

If the justification depends on the argument that the notion of set is not 
clear unless we have a universal set, set theories that combine standard 
logic with having a universal set might be alternatives. Again, provided 
they are more natural or coherent that the paraconsistent systems. 

 

An even more decisive point may be keeping unrestricted (Naive) 
Comprehension. That is something that neither ZFC nor systems like NF 
can do. Paraconsistent set theories help Logicism to a second chance. 
Russell and others worried – inter alia – that the Axiom of Infinity does not 
sound like a logical principle, but boldly asserts the existence of specific 
sets. One we have (NC) we get U and ∅, and we can comprehend specific 
sets as subsets of U. There are infinite sets (in Dedekind’s classical 
definition) as U can be mapped to the singleton image of its elements, thus 
is (Dedekind) infinite. 

Neither does everyone like the distinction between classes and sets. A 
theory not making this difference might be preferred.  

 

                                                                                                                                                   
and Brady outlined in the preceding paragraphs and versions of set theory framed in 
first order LP or APS are – as first order systems – not fulfilling the antecedents of 
Dunn’s theorems. For a first order system supposed to be universal (i.e. modelling its 
own semantics) questions as to ambiguity arise. Can unintended models be excluded? In 
a standard setting distinguishing object- and meta-language non-intended models are 
constructed by keeping the intended meaning of all the machinery needed to construct 
the non-intended model in the meta-language. After dropping the distinction between 
object- and meta-language re-interpretation tends towards global scepticism with 
respect to meaning. Should we care about global scepticism of this sort? 
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An ontology of inconsistent objects is – in my eyes – the greatest challenge 
of/to paraconsistent mathematics and set theory. 

Given the strong paraconsistent program of true contradictions and a even 
mildly realistic theory of truth (containing in some – maybe even restricted 
– fashion the idea of correspondence), a true contradiction is supposedly 
made true by either an inconsistent fact (taking facts – at least for the 
moment – to be truth makers of statements) or by inconsistent objects. Like 
true contradictions they are just there. 

Mathematics has traditionally been the hallmark of a science that proceeds 
by proof, and so is free of falsehoods and more so of inconsistency. 
Changing the basic logic used in mathematics to a paraconsistent logic 
makes mathematics in a weak sense paraconsistent: If there were to turn up 
some inconsistency in mathematics, it would not explode. But since there 
are no inconsistencies expected to arise there, a mathematician will not be 
inclined to forego the deductive power of FOL. 

Changing set theory to a paraconsistent set theory makes mathematics 
paraconsistent in a stronger sense, since now the basic axioms are taken as 
the inconsistent axioms of naive set theory. There are now real 
inconsistencies – may be even inconsistent objects – in mathematics and 
the logic, therefore, has to be a paraconsistent one. 

And the inconsistency may not only reside with some elusive set theoretic 
entities, but there may be inconsistent numbers as well! 

To have an inconsistent number theory means at least that within the 
theorems of number theory there is some sentence ϕ with ϕ being a 
theorem and ¬ϕ being a theorem at the same time. Supposedly this 
corresponds to at least some object/number a being an inconsistent object. 
Therefore inconsistent mathematics is connected to inconsistent ontology. 
Its underlying logic has to be paraconsistent. 

The problems with having “F(a)” and “¬F(a)” for some object a seem not 
so pressing if a is some mathematical object than a being a physical object: 
Mathematical objects are either non-existent – mere theory, taken 
instrumentally – or they are in some elusive Platonic realm where strange 
things may well happen. If on the other hand one is a reductionist realist 
about mathematics (mathematics being about structures of reality or 
mathematical entities rather being concrete entities dealt with by 
mereology) then inconsistent mathematics is as problematic as your cat 
being (wholly) black and not being (wholly) black at the same time. 

The challenge may not be that great for Naive Semantics given some 
mildly anti-realistic theory of truth (containing in some – maybe even 
restricted – fashion the idea that truth depends on justification), and 
observing that the inconsistent objects in that area are sentences only. The 
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real problem are objects like the Russell set or the least inconsistent 
number. Isn't that too much to bear, even for a dialetheist? 

The most famous theory in the field is Meinong's ontology of possible, of 
inconsistent and of impossible objects, and their modes of being. 

As a realist – even if you do not adhere to naive realism or extreme 
versions of metaphysical realism – you adhere to some principle that there 
correspond structured entities (facts or objects with properties) to true 
statements. The entities are – at least as much as our linguistic resources to 
describe them are partly sufficient – as the true statements say they are. 
This means that a truth like “F(a) ∧ ¬F(a)” means at first sight that the 
object a has property F and does not have property F. On second sight one 
will have work with the idea of an extension of “F( )” and an anti-extension 
of “F( )”, the extension being the set of entities fulfilling the criteria of F-
ness, and thus being F; and the anti-extension being the set of entities 
fulfilling criteria of not being F, thus being not-F.  

For an anti-realist this may solve the problem of inconsistent objects, since 
being an inconsistent objects means nothing more for an anti-realist than 
that the objects fulfils inconsistent criteria. There is no claim on the anti-
realist's side that there corresponds something to this in reality. 

The anti-realist can even explain how this may happen in case of ordinary 
objects: If predicates are employed to more or the less vague criteria or 
family resemblances to some prototype it may happen that one route of 
resemblance leads from the prototype of F to a, and another route leads via 
some intermediaries from a to a prototype of non-F. In the manner of weak 
paraconsistency one may argue that we have to be able to model theories 
that depict – at least implicitly – the world as containing inconsistent 
objects, without ourselves to be committed to this picture. We need the 
formal tools (like APS) for this, but these tools themselves have no 
negative ontological impact. That is just like we need a logic to draw 
inferences in works of fiction (or about art) where some works are 
essentially inconsistent with respect to some object (e.g., some stories 
about time travelling or drawings by M. C. Escher). 

A realist cannot take this easy way out. For (most) realists properties are 
structures of objects – or parts or tropes... – and either you have them or 
not.  

In case of sentences – i.e. for a dialetheist view on naive semantics – the 
way out may be that a sentence is really an object that can have 
inconsistent properties without us having ontological scruples: A sentence 
being a dialetheia means that it and its negation are provable. These are 
clear cut properties. The content of the semantic antinomies, once again, 
concerns facts about language. Given our mild form of realism that 
incorporates some idea that truth is also – besides aiming at correspondence 
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– tied to justification we can accept inconsistent objects here, since this 
‘merely’ points to the inconsistent nature of our linguistic access to reality. 
That is a deep philosophical point – as dialetheism is – but it locates the 
inconsistent objects somewhere in the objects having the job of mediating 
between our mind and the rest of reality, these objects often being 
constituted by linguistic conventions. 

Dialetheism in semantics needs no special ontology of inconsistent objects 
if the inconsistencies are located within our linguistic frameworks. That a 
sentence can be shown to be true and can be shown to be not true points to 
the fact of inconsistent evaluations or derivations, but to no deep 
ontological mystery. 

The problem of inconsistent objects is much harder with respect to ordinary 
objects. If properties are structures of objects, and this means in the last 
analysis structures of distribution of matter and energy, then an inconsistent 
objects cannot exist, it seems, since either at some location there is matter 
or not. 

Inconsistent theories in the sciences can be understood in the sense of weak 
paraconsistency, i.e. they may be modelled by APS-style quantificational 
semantics with inconsistent objects, but one need not believe that there 
really are these objects. 

You really need an ontology of inconsistent objects if you are a 
mathematical realist and your favourite mathematics is inconsistent, or if 
you are a dialetheist in a set theory, again taken realistically. 

 

For a dialetheist the problem is naive set theory, given one is a realist about 
sets. A set, it seems, either is a member of another set or it is not, otherwise 
the including set could not be well-defined. 

 

* 

 

Dialetheist have turned to ‘noneism’ to have an ontology with inconsistent 
objects without being either fictionalists or being committed to inconsistent 
objects in the realist’s sense. 

So we have to take a short look at noneism here, as this ontological 
framework distinguishes some paraconsistent approaches from all other set 
theories considered here. Some short criticism will be pointed at it, but a 
more comprehensive rejection is part of the broader ontological reflection 
in chapter VI. 

The idea of noneism is taken from Alexius Meinong’s Gegenstandstheorie 
(Meinong 1904), his theory of possible, impossible, existing and non-
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existing objects. “Object” in fact becomes a technical term with Meinong. 
Meinong considers the label “object” as carrying no ontological 
commitment. In Meinong's ontology all objects are – in a sense of “are” to 
be explained. There ‘are’ also inconsistent and impossible objects. With 
inconsistent objects there seem to be inconsistencies, since the round 
square is round, and is square, thus round and not-round. Meinong himself 
did not develop a logic to deal with inconsistent objects. He saw standard 
logic as fit for existing objects (these are the objects in space and time). 
Inconsistent objects are for him, because of their inconsistency, impossible 
objects (i.e. it is impossible that they exist, i.e. are somewhere in space and 
time). Meinong's basic idea is the rejection of any inherent connection 
between having properties (i.e. predication) and existence (i.e. 
“metaphysics”, in Meinong's use of the term). Meinong’s point of attack is 
the Ontological Assumption saying: 

 (OA) Predication implies existence. 

and the Referential Assumption saying: 

 (RA) Every singular term refers to some kind of being. 

Meinong's more fundamental idea – behind his attack on (OA) and (RA) – 
is the claim that objects are beyond being. That idea is supposedly hard to 
grasp. Meinong does not claim that there are realms of being besides being 
in space and time (i.e. existence). There are no domains of possibilia 
(possible objects). And there are no ‘outer-domains’ (like in some Free 
Logics) where even more strange objects like the round square reside. 
Meinong claims that objects are without being! The philosophical field that 
deals with objects in this generality is Gegenstandstheorie [Object Theory] 
(whereas metaphysics is concerned with existents only). 

The central idea put forth by Meinong, going back to his disciple Mally, 
can be summed up as the Independence Thesis: 

(IT) Even nonexistent objects have properties and are constituted in 
some way.  

Given (IT) one can truly say of the round square that it is round (as it is 
square) without committing oneself to its existence by this. Predication is 
independent of existence. Truth does not require referential truth conditions 
in the ordinary sense. 

Meinong’s theory has often been ridiculed, from Bertrand Russell (1904) to 
Gilbert Ryle (1973), who famously claimed ‘Gegenstandstheorie itself is 
dead buried and not going to be resurrected’ (1973, p.255). With the 
advance of free and many-valued (modal) logics systematic formalisations 
have been put forth to show its coherence (Jacquette 1996, Lambert 1983). 

Richard Routley (1980) and recently Graham Priest (2005) have developed 
Meinong’s ideas as ontological background theory for their dialetheism 
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(their view that there are true contradictions). Routley invented the term 
‘noneism’. It is a name to an extended theory using Meinong's main claim. 
Noneism claims, for example, that mathematics does not deal with 
anything having being. So, for the noneist, there is no problem of abstract 
entities: Numbers etc. are objects and nothing beyond that. The same goes 
for sets and properties (if taken as abstract entities). Noneism is the 
alternative to Platonism, it claims. Noneism is, as well, for its proponents 
the alternative to modal realism (of the sort defended by Lewis 1986) as 
noneism allows for the same promiscuity of quantifying over any object (of 
thought) whatsoever.  

The theory surrounding these theses Routley sums up in a couple of main 
postulates of noneism:  

(P1) Everything is an object. 

(P2) Many objects have no way of being. 

(P3) Nonexistent objects have properties and are constituted in 
some way. 

(P4) Existence is no characteristic property of an object. 

(P5) Every object has an essence independent of its existence. 

(P6) Every object has its characterising properties (in some possible 
world). 

These postulates have some immediate consequences: 

• by (P1) anything can be the object of a belief, desire, fear – any 
propositional attitude – whether the object is possible or impossible. 

• by (P6), also called the Characterisation Postulate, the golden 
mountain is golden, and the round square is round and is square. The 
Characterisation Postulate is a further claim to the well defined 
nature of nonexistents. 

• by (P4) versions of the ontological proof of God's existence should 
be blocked. As existence is no characteristic property all existence 
entailing properties (like necessity) cannot be characteristic, and thus 
are not allowed to use in characterisations. 

• by (P3) and (P5) the round square and the triangular square are 
different impossible objects as they have a different set of properties 
each. 

• by (P5) and the existence of impossibilia we can say:  

   “There is something which necessarily does not exist.” 

The quantifier “there is” having no existential impact here. 
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Not every sentence about a nonexistent object has a truth value, since 
nonexistents are in most cases only partially characterised. We do not know 
how many rolls Holmes ate during his observation of the Baskervilles. So a 
noneist logic may allow for truth value gaps. Priest, accordingly, claims 
noneism to be the proper theory for intentional and fictional objects.48 
 

Prima facie noneism seems a close cousin of metaphysical fictionalism, if 
not a brand of it. Fictionalism and noneism both maintain – in contrast to 
instrumentalism, which sees the  ontological posits of a theory referring to 
unobservables merely as part of a calculating device for predictions – that 
the ontological claims made by a theory should be taken as genuine, 
capable of being true or false. Interpreted thus the fictionalist, however, 
takes these ontological claims as being false. Mathematics, for example, is 
strictly speaking false for the (mathematical) fictionalist, since there are no 
numbers, but mathematics claims to talk about them. In a similar way 
modal theories or ethics may lack their supposed subject matter. Despite of 
this the fictionalist recommends accepting these theories, since the aim of 
theories of this type, dealing with the problematic subject areas, is not 
providing a true description of how things are in reality, but rather to 
produce theories with other virtues (like predictive success or the ability to 
systematize our observations). According to the fictionalist, one may thus 
not believe a theory, since strictly and non-strictly speaking it is false (i.e. 
not just as a matter of being an idealisation or approximation), but one may 
nevertheless accept it. Fictionalist accounts of this type have gained 
support and found wider application (cf. Kalderon 2005). Noneism, despite 
sharing the fictionalists rejection of realism in, say, mathematics and modal 
ontology and sharing the fictionalist’s attitude of taking the ontological 
claims ‘at face value’, is almost the opposite of fictionalism: Noneism takes 

                                                
48  Further on, Priest introduces his noneism in reference to Routley, but tries to 
improve on Routley’s theory (especially on the way to render (P6) less problematic). If 
a characterisation always holds and characterising an object obeys no restrictions 
besides excluding existence entailing predicates, (P4), one can introduce for any 
statement α a characterisation: x = x � α . If object b is characterised by that, we have: 
b = b. Thus with the reflexivity of identity, (�x)(x=x), any statement can be derived. 
Triviality ensues. Priest therefore weakens (P6) to the assumption that there is some 
possible world at which the properties apply to the characterised object. And one 
possible world is the trivial world, where everything is true. In line with (P4) the use of 
“	” in characterisations has to be restricted as “x = x � 	α” in combination with S5 
modal axioms would also trivialize each world! Whether Priest’s version improves or 
waters down Routley’s theory will not be discussed in much detail either. Some 
differences will be commented upon, cf. §5. In any case Priest subscribes to (P1) - (P5) 
in the presented form, which are central with respect to existence/non-existence claims. 
He adds his version of (P6). Routley himself later (1995) considered ‘items’ to be 
completely free with respect to having all their characteristic features in their ‘region’ 
only, so that one may later look how to integrate these regions or make them overlap. 
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the claims of the respective theories as dealing about entities, although, of 
course, these entities are taken as being non-existent. Correspondingly 
some of the theories in questions are simply true (i.e. true in the same sense 
observational statements are taken as true by both instrumentalists and 
fictionalists) if the facts claimed to obtain by these theories are facts 
about/concerning the respective non-existent entities. Although noneism – 
inter alia – is a theory of fiction and fictional entities, the entities it deals 
with are not taken as fiction. Count Dracula is a non-existent fictional 
object, the number 4 is a non-existent non-fictional object. For the noneist 
the number 4 is not more fictional than you and me, it just does not exist 
(i.e. is not in space and time). Routley is very outspoken about this: 

Mathematics is objective; for pure mathematics is concerned with the 
properties and relations of objects, objects which, though they do not exist, 
are objective, are in no way mind-dependent … (Routley 1980, p.794) 

Fiction presents stories. Fiction is presented in form of mind-dependent 
human representations. The fictionalist considers the story as told as 
essential in his assessment of an acceptable theory. Not so the noneist: In as 
much as the mathematical objects are not mind-dependent, mathematics 
does not reduce to story telling and even ‘any constructive aspect vanishes’ 
(Routley 1980, p.916).49 

Further on, noneism, does not contain the problematic distinction between 
believing and accepting a theory, constitutive for a fictionalist account of 
supporting a mathematical or modal theory. 

Noneism is advertised as solving a couple of central ontological problems 
or even dissolving some old ontological conundrums. Routley rest his case 
for noneism on its fecundity to treat a plethora of philosophical problems in 
a unified systematic fashion.  

One major use could be dissolving the problem of abstract entities by 
recasting them as perfectly harmless. Many statements considered 
problematic by philosophers (e.g. not only those dealing with abstract 
objects, but those of indirect discourse, those of fiction and those of false 
theories) are – even if false in some cases – perfectly in order as they are. 
The talk about the objects they purport to talk about. If entities like 

                                                
49   Things are more difficult with Priest’s version of noneism, as he takes some 
mathematical statements (e.g. numerical identities) as simply true and others (e.g. set 
membership assertion) as not actually true, but true only in those possible worlds where 
the objects concerned exist (in the ordinary sense of “exist” it seems), although he also 
allows for these statements being simply true, as they (say again set membership 
assertions) are not existence entailing. This fits to postulates (P1) – (P5). In any case, he 
takes ‘it to be true that something is the unit set of the null set’ (2008, p.209), so 
committing himself to the non-existent objects (taken as existentially noncommittal 
‘somethings’). 
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numbers or sets have no existence at all, it does not matter that they are set 
apart as entities of a special kind (say the subject matter of mathematics). 

Sets are objects, there are sets with contradictory properties, but all this, 
according to the noneist, does not go against our initial realistic intuitions, 
since sets are not existing entities. Some forms of realism about sets have 
to be given up on this move, of course (namely those which claim that sets 
‘are’ just in the same way chairs ‘are’). Still the noneist may endorse a 
version of realism that agrees with ordinary (truthmaker) realism on 
physical objects, and claims for all non-existent objects that true sentences 
about them correspond to states of affairs containing these non-existent 
objects and their (non-existent) properties. If truthmaking is not understood 
as a causal relation, a noneist may even consider such states of affairs as 
truthmakers of the corresponding sentences, adding that these states of 
affairs themselves are, of course, non-existing objects. 

Once the major stumbling block of inconsistent ontology is removed from 
inconsistent set theory and inconsistent mathematics their case against 
standard set theories and mathematics is strengthened. Their virtues (like 
allowing for a strong finitistic arithmetic, cf. van Bendegem 1993, 1999) 
then may put the standard theories on defence. The viability of noneism, 
therefore, has wider repercussions than one may have expected. 

  

We return to the issue of noneism when we discuss the broader ontological 
picture in chapter VI. Note, however, that a paraconsistent set theory may 
be a Platonist or fictionalist theory as any other set theory. Dialetheism then 
adds the idea of inconsistent abstract objects or the idea of useful 
inconsistent stories. 

 

* 

 

Apart from its ontology paraconsistent set theories are certainly different 
with respect to the theorems holding in them. One cannot expect that 
theorems of ZFC carry over, as many of them are proven by means – like 
indirect proofs – which are not valid in the paraconsistent theories. 

One critical instance may be Cantor’s Theorem. The usual indirect proof 
proceeds by arriving at the contradiction of the element xi being and not 
being an element of the set of the set of the x�y not being an element of 
the subset they are coordinated to by the supposed bijection ƒ between a set 
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y and ℘(y), i.e. ƒ(xi)={x�y | x ∉ ƒ(x)}. A dialetheist may simply embrace 
the contradiction.50  

Non-existence claims which rest on Cantor’s Theorem can be rejected by 
paraconsistent set theories. The set of all truths exists: the usual argument 
for its non-existence does no longer go through (that for any sentence α 
and any subset x of truths the cardinality of questions α�x exceeds the 
supposed cardinality of the set of truths; cf. Grim 1991, pp.91-93). 

If there was no proof of Cantor’s Theorem one may well have ℘(U) ⊆ U 
without further contradiction. The absence of Cantor’s Theorem, 
additionally, may wreck also the move to higher infinite cardinalities. Thus 
the universe U of such a paraconsistent set theory may not resemble V.  

In the extreme case – ‘extreme’ for the common view, of course – we are 
driven from ‘Cantor’s Paradise’: there is exactly one infinite cardinality: 
infinity. One may embrace this actual infinity and stick to the pre-
Cantorian intuition that there come no larger collections than the (simple) 
infinite ones (i.e. those having this one cardinality ℵ). 

(NC) and a condition ϕ similar to the Axiom of Infinity (also mentioning 
the comprehending set y): 

 x = ∅ � (�z�y)(x = z � {z}) 

open in “x”, allow for an infinite set: ∅=∅ ensures ∅�y, enforcing 1�y 
by the second disjunct, and so forth. The finite ordinals exist by their 
instances of (NC), where the defining condition ψ may simply list their 
finitely many members (e.g. x�3 ≡ x = ∅ � x = {∅} � x = {∅,{∅}}). 
The infinite set ω collects them. 

 

If there is no infinity beyond the countable (and thus no properties beyond 
those which are expressible by the formulas of our set theoretic language) 
one may use set abstraction to define “�” by the schematic 

 (D�2) x � y   y = {x | ϕ(x)} � ϕ(x) 

“�” thus no longer being the primitive expression introducing set theory; 
“⊆” being defined in the usual way.  

In this way a variant of the Axiom of Constructability, V = L, may return, 
namely:  

(Constructability)  U = L  

If for all sets there is some defining formula ϕ the last argument in favour 
of a distinction between two types of collections, the one defined by a 
uniting ‘rule’ and the other merely by its elements (one understanding of 

                                                
50  Even proofs like (Raja 2005) which do not use the diagonalization proceed by 
reduction, an inference not available in full generality in paraconsistent systems. 
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the distinction between ‘classes’ and sets) loses its force. Note again that 
the arguments against Constructability stemming from the naturalness of 
the concept of POWERSET and set theoretic realism also have no force in the 
absence of Cantor’s Theorem. All subsets can be there and be expressible. 

 

At the end of chapter I we outlined an approach claiming V to be an entity 
sui generis. We may use the special character of V to account for the 
viability of ZFC then. If one does not support such an understanding of V 
one needs some other (stronger) formal system as meta-theory of ZFC. So 
even if set theory is our strongest formal system in applied science, we 
have to ask where we are when we talk about it and V. The main advantage 
of a paraconsistent approach can be seen in its incorporation of meta-theory 
into the most comprehensive formal system. A paraconsistent set theory 
has to have a paraconsistent meta-theory, since otherwise it has to use some 
theory like ZFC again, inheriting all the conundrums the paraconsistent 
theory was set out to solve. The meta-theory cannot be consistent as it 
treats of the universe (i.e. treats of an inconsistent object), which can only 
be reasoned about using (restricted) paraconsistent inference rules. A 
paraconsistent set theory has a model <U,I> U being the domain, I the 
interpretation function. Their ordered pair is a set, as U can occur in itself 
and other sets, and so is treated within the very same theory again. And it 
may be another inconsistent object.51 

                                                
51  If standard logic and set theory are employed in the meta-theory one can use 
classical meta-theorems to outline (term) models of some paraconsistent set theories (cf. 
Libert 2003, 2005 and reference therein). This is neither an option in our discussion 
about U, where pushing the issue in the meta-language does not help, nor in the wider 
dialetheist perspective, where, for instance, the conditional and identity rules employed 
by Libert would lead into serious trouble (cf. Bremer 2005, pp.185-98). 
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VI 

BROADER ONTOLOGICAL REFLECTIONS 

 

When considering set theories as ontologies broader ontological issues 
arise. 

On the one hand we have to reflect on ontological methodology. Maybe 
there are some methodological peculiarities to set theory as ontology. On 
the other hand we have to face some ontological issues that seem to arise 
especially with set theory. Foremost this is the issue of an incomplete 
universe. Also the distinction between sets and other collections has to be 
considered.  

Famously Cantor distinguished sets as consistent collections or ‘finished 
sets’ from collections which cannot – on pains of antinomies – be taken as 
‘finished’. For these ‘absolute infinite’ collections (or ‘multiplicities’) 
Cantor claimed that ‘the totality of their elements cannot be thought as 
“existing together”’ (cf. Cantor 1991, p.390).  So they seem to have 
elements and at the same time the elements do not exist together. This 
looks like a contradiction – contradicting inter alia the Domain Principle – 
and thus the name “inconsistent multiplicities” seems appropriate. 

Another interesting issue in axiomatic ontology is the existence of a null set 
∅. Zermelo at least sometimes thought of the null set as a mere technical 
device. Such an attitude does not square with set theoretic realism. ∅ is the 
paradigm abstract object. One may be tempted to locate the singleton of the 
Cologne Cathedral at Cologne, but there is nowhere to place ∅. One may 
try to avoid using ∅ and demand that every set has a member. Doing so 
(e.g. Maher 1968) requires to axiomatically introducing some substitute 
which behaves like ∅ (e.g. in building unions and cuts) without being ∅ 
(i.e. without being empty the substitute’s members do not occur in the 
unions it builds). This way of employing axiomatic ontology to get rid of ∅ 
invites many questions for explanations, all of which do not arise in Z with 
respect to ∅ – or can be answered easily. Once one assumes an abstract 
category of containers it may not look so unnatural to assume ∅. The idea 
of an empty collection may be more natural than that of a sequence of 
transfinite cardinals.  

 

* 
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There are problems with a universal set even if the set theory containing it 
is consistent. 

Although one may argue that a universal set is one of the hallmarks of an 
acceptable set theory, looking at the set theories with a universal set may 
give one second thoughts. 

Set theories with a universal set attack the 2nd objective to be achieved by a 
naïve set theory: having a universal set. The 1st objective being having 
Naïve Comprehension. They can be taken as the claim that a universal set 
can be had without dialetheism. The more general reply to the dialetheist’s 
claim (that we accept true contradictions because we want to see the two 
objectives of naïve set theory realized) might be that one sees more 
problems than benefits related to a universal set in the first place. 

The first category of objections may be called negative in as much as they 
argue against the supposed gains of a universal set: 

(i) Since meaning isn’t extensional, fixing the meaning of “set” does not 
require an extension to the predicate “is a set”. The meaning of “is a 
set” is fixed by the axioms governing our identification of sets. 

(ii) If the extension of a predicate ϕ cannot be a set this doesn’t mean 
that there is no referent of ϕ at all, it just has to be fixed singularly. 

(iii) If consequence is spelled out model theoretically one may quantify 
over all appropriate structures’ equivalence classes (in terms of 
isomorphy). Interpretations interpret languages with countably many 
formulas. Even sentences talking about uncountable structures 
cannot be supplied indefinitely. For structures of high enough ranks, 
even if they do not comprise all the sets, it is not obvious that some 
relevant structure is left out (this would have to be one with no 
isomorphic structures so far). A finite being cannot scrutinize them 
anyway. 

The second category of objections may be called positive as they argue 
directly against a universal set as violating our intuitions itself: 

(iv) As the absence of U seems to miss having a set corresponding to 
sethood, NF and relatives have no set [∈], {<x,y>|x ∈ y}, where [∈] 
is as intuitive as U is, no singleton function etc. 

(v) Like “∈“ “⊆“ could be taken as the basic concept of set theory. Then 
the powerset axiom is even more fundamental than it is intuitive 
already. ℘(U) ⊆ U is not only a claim about cardinalities, but claims 
that all subsets of U are already in U. This is counterintuitive, and to 
block Cantor’s Theorem some subsets which seem to exist have to 
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be taken as non-existent (e.g. the diagonal set of the supposed 
bijection ƒ).  

NFU ‘solves’ this problem by having more atoms/pairs than sets, but this – 
looking at the cardinalities involved – is obscure, because this means just 
too many atoms or even not every atom having a singleton! The third 
category of objections asks us to reconsider some ontological alternative: 

(vi) Suppose there is no set of all sets but a realm set theory is talking of. 
There is no need to take it as a set; supposedly everything useful can 
be said talking of sets only. There may be subparts of this realm (e.g. 
the part where the ordinals are), but again this realm/part-relation 
may be something like mereological composition. There is no need 
to have a theory of proper classes (as a theory similar to set theory). 

(vii) Once we allow for more than finite sets not every condition defines a 
set – remember that Naïve Comprehension is consistent on the finite 
sets! The limits of restricted Comprehension (like in ZFC) are just a 
‘failure’ to commit us to even more infinite sets. That doesn’t seem 
so bad. Given the set of finite sets, Naïve Comprehension and 
(restricted) Comprehension come to the same thing. As Naïve 
Comprehension means trouble only with infinite sets this again may 
be rather a problem of the infinite. In the infinite ZFC-
Comprehension (i.e. Separation) doesn’t seem too bad.  

 

 
* 

 

The main alternative to a universal set seems to be the idea of an 
unbounded sequence of ever higher cardinalities. The idea of classes 
provides just an intermediate halting place before collecting them to 
proceed further! 

Can we really understand an incomplete universe? The short reply that in 
reading a book on it, writing a paper on it and having a discussion we 
obviously understand the position we are attacking is too simple. Obviously 
one can retell what some authors have published or said about ‘absolute 
infinities’ or an ‘incomplete universe’. In a sense of “understand” we 
understand the strangest stories that lack coherence, at least up to a point. 
Around that elusive ‘point’ of not coming to terms with a story or theory 
we are at a loss what somebody is writing or talking about. We are at a loss 
– we may conjecture – because what we are told goes massively either 
against our standards of coherence or against our understanding of involved 
core concepts. This conjecture is still quite vague. And, with respect to 
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paraconsistent set theories, we cannot appeal here to strict standards of 
consistency against dialetheists without begging too many questions.  

 

Metaphysics in analytic philosophy traditionally (starting with Frege) could 
be seen as deriving from semantics or an account of the truth of 
statements/propositions. Frege assumes concepts as entities in their own 
right and with their peculiar feature of being ‘ungesättigt’ (having a gap to 
be filled by some argument), because he needs this ontological assumption 
in his account of assertions/statements and their cohesiveness. With the 
increasing interest in ontological questions in their own right metaphysics 
nowadays if often seen as independent from semantics, not to speak of 
epistemology. Metaphysics in this newer tradition advances as axiomatic 
ontology. “Axiomatic” is meant in theories of this type in a sense close to 
the sense of laying down axioms in logic or mathematics. Axioms may be 
useful (say in applying mathematics in science), but foremost are 
stipulations concerning either the concepts or the entities contained in 
them. As Carnap saw ‘no morals’ in logic, so that according to his principle 
of tolerance every system had a right to be developed, so the axiomatic 
ontologist may see no morals in ontology so that there are no restrictions on 
ontological postulates. In the light of this approach one might consider any 
set theory as just another axiomatically founded ontology. The axioms just 
being its introduction. 

Carnap may well have been wrong about conventionalism in logic, at least 
in the sense that human reasoners follow one specific logic (or a narrow 
range of logics) and in that the human language faculty may contain one 
specific logic (or a narrow range of logics). In a similar way stories and 
accounts about the possible furniture of the universe may be interesting in 
their own right, but given even a mild realism, there cannot be just any 
entity proposed by some story or ontological account. And given, further 
on, some mild evolutionary account of our cognitive faculties our human 
conceptual system cannot be neutral with respect to ontological theories. 

The debate over incomplete universes vs. inconsistent totalities might thus 
be put: Does our conceptual system allow for them? 

The difficulties which one may have with the mere postulation of some 
axioms may point to some more general methodological lessons in 
metaphysics. Something seems to go wrong here with axiomatic ontology. 
From the point of view of the Fregian tradition, which put semantics before 
metaphysics, axiomatic ontology has gone too far. Notwithstanding its 
limits or shortcomings the linguistic or conceptual turn of (analytic) 
philosophy is still endorsed by a proponent of this tradition. Postulating 
relations works in science in as much as the postulates are borne out by the 
thus established (scientific, experimental) practice and theoretical 
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framework. Definitions are not refuted by evidence, but some definitions 
turn out to be useless or to be incoherent with other parts of a theory. As 
has been noted often: Conventions (alone) do not deliver truth(s). We 
understand what it means to tell a story. We may conceive of such a fiction 
even in terms of images what the world had to be like if the fiction was 
true. We employ our imagination thus when reading a book others do that 
when producing a (fantasy) movie. No one, however, can imagine the 
Russell set or the round square in that way.  

To decide between ontological proposals we need criteria to judge their 
respective merits. These criteria may take up the tenet for which the 
respective ontology was developed. Alex Oliver (1996, pp.2-13), 
discussing the metaphysics of properties, proposes to look at an ontology’s 
achievement in conceptual analysis, in as much as ontologies are 
introduced to account for the function and content of expressions. To 
understand what a name is one introduces referents, for example. 
Following such an analytic procedure (types of) entities are introduced 
which, according to the analysis, account for our use of language. And no 
other entities are to be introduced, as ontologies have to be economical.  

With respect to ontological economy one may distinguish between 
ideological economy and ontological economy proper. Ontological 
economy proper concerns the number of introduced types of entities. 
Ideological economy concerns the number of undefined basic concepts of a 
theory. The less undefined concepts a theory has, the more concepts have 
to be defined, and the more inferential links will be present in the 
conceptual system of the theory, which therefore shows a higher degree of 
systematicity (cf. Goodman 1943, 1949, 1972, pp.275-355).   

Now, we can increase the ontological economy proper of a theory if we 
introduce undefined operators and relations instead of basic types of 
entities (say, if we do not define “necessary“ and so forsake the 
introduction of possible worlds). And vice versa:  We can define former 
undefined concepts by introducing new types of entities to occur in their 
definitions. This is even true of methodological concepts (say, if we 
substitute “being a relation” by ordered pairs or tuples).  How can we 
decide then the degree of simplicity of an ontology?    

One constraint is the provision of fruitful conceptual analyses of concepts 
we employ in our ordinary thought and discourse. ... Here, as in all 
philosophical inquiry, we must adopt the method of reflective equilibrium, 
balancing the demands of theory against the preservation of 
commonsensical beliefs. .. [O]ne cannot hope to defend a metaphysical 
theory by constructing knock-down arguments against each of its 
competitors. There are numerous ways to trade off ideological and 
ontological economy and to balance these theoretical benefits against the 
preservation of common-sense belief. One can only hope to draw up a cost 
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and benefit score sheet, it being a very real possibility that there will be ties 
for first place. (Oliver 1996, pp.4-5) 

Systematicity (and thus a higher degree of ideological simplicity) yields 
more explanatory power, since less fundamental principles (those 
containing the undefined basic concepts) have to be used. Conceptual 
analysis provides a decrease in the number of undefined concepts.52 We 
explain a fact by conceptual analysis by being explicit about the concepts 
which are used to describe the fact (cf. Oliver 1996, p.6). So a high number 
of definitional links increases explanatory power. Therefore, one usually 
may prefer higher ideological economy over higher ontological economy 
proper, as regularly theories are chosen for their explanatory power (cf. 
Thagard 1978, 2000). Thus one will accept those (types of) entities which 
are introduced in building up the framework of such a theory. 

One might consider ideological economy as a meta-constraint on 
ontologies as they are to be embedded into wider theories, which have to 
compete in explanatory power. Another meta-constraint could tie an 
ontology to a broader scientific perspective like nominalist scientific 
realism etc. We will focus here on two basic criteria for ontologies 
themselves. One may keep ideological economy as an important 
desideratum in mind. Generally, however, we may prefer the foundations 
of mathematics to be as neutral as possible with respect to controversies 
between concrete scientific theories. 

These considerations lead to one criterion of a successful ontological 
theory: 

(O1) Legitimation by Conceptual Analysis 

Exactly those (types of) entities are to be assumed which have 
to be introduced by the best conceptual analysis of the target 
domain of concepts. 

(O1) has to be supplemented, however, by a second criterion: 

(O2) Epistemological Constraint 

An ontology which introduces (types of) entities has to contain 
a theory how we know of these entities. 

                                                
52   One need not subscribe to a highly controversial theory of concept definitions to 
have some form of conceptual analysis. The argument presupposes only that some form 
of conceptual analysis is possible (cf. Jackson 1998), where conceptual analysis is even 
viable in theories which deny that there are enough definitions providing an analysis 
into necessary and sufficient features, as long as we allow for any inferential links (cf. 
Bremer 2008). One may even speak of ‘analysis’ simpliciter as one stresses that this 
analysis yields substantial insights, often denied to ‘mere’ linguistic or conceptual 
analysis (cf. Williamson 2007). 
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This constraint will not be endorsed by someone following a ‘pure’ 
axiomatic approach to ontology. Giving up (O2) on the other hand means 
giving up the approach to ontology which ties it to our conceptual system 
and our use of language (as any theory of these will have to contain a 
theory of how we refer or ‘hook up to’ entities of some kind). Not 
subjecting a conceptual analysis to the epistemological constraint seems to 
miss that the target of analysis are our concepts and linguistic abilities. Any 
analysis of our concepts should contain a part explaining how we can use 
these concepts or manifest our knowledge of their proper employment. 
Even if one does not follow the strict agenda of Michael Dummett (1991) 
and his adherents any theory of our concepts should contain a part 
explaining our use of these concepts in our engagement with reality and 
other speakers. If our possessing some concept is reduced to some type of 
entity (as outlined above) then a comprehensive theory of our concept 
possession should contain how we can stand into contact with entities of 
this type or can know of them. 

Criterion (O2) seems to stack the cards in favour of some causal theory of 
knowledge or access. This need not be so. (O2) can be weakened to the 
requirement of giving an account of how we can make justified statements 
about the entities in question. Taken thus, Plentitudenous Platonism, which 
claims that we by developing consistent theories have justified beliefs 
about abstract entities, passes this test, as noticing consistency is taken as  
faculty independent of an elucidation of consistency in model theory or 
logic (cf. Ballaguer 1998, pp.48-75). 

David Lewis’ modal realism for all its ideological economy, relying just on 
classes and all individuals (everywhere), is mostly rejected by its blatant 
failure to give a convincing answer to (O2), as Lewis postulates the 
absence of any access connection between us and (other) possible worlds 
(denying both spatial and causal access). This – as with Plentitudenous 
Platonism – may be too quick. Lewis may well argue that justified belief in 
modal realism is enough if there are just these worlds. 

There may be more conditions one may like to lay down for ontological 
theories. On the other hand the burden of outlining other conditions for 
understandable and acceptable ontological theories lies with the axiomatic 
ontologists. 

Let us consider four set theoretical options in the vicinity of universality 
introduced earlier [in chapters I & V] in face of these conditions. We have 
to turn to some analysis of the involved concepts. 
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(1) Noneism 

The following discussion will be concerned only with noneism (i.e. with a 
theory subscribing to the noneist principles (P1) - (P6) in some form) and 
Meinong’s thesis of non-being (‘Außersein’).53 

David Lewis (1990) complained against Routley’s use of two ways of 
quantifying, one time with existential impact, one time without. The mere 
occurrence of two types of quantifiers may not be the core of the problem. 
Non-committal quantifiers have become a common tool in modal and Free 
Logics, usually in combination with an existence predicate. The concern 
behind Lewis remark on the quantifiers points, however, in the right 
direction: If “there are” is not committal in any sense (i.e. not even to 
possibilia, as it is committal in many Free Logics), what does it mean after 
all? We (i.e. we who are not noneists, yet) run against a way of talking 
defying our understanding. Our first problem is not that we do not agree 
with the noneist, but that we simply do not understand what to disagree 
about.  

The distinction between existents and possibilia is a clear one in modal 
semantics. Noneism claims even less being than possible being, but still 
uses the forms of “to be”. What an object beyond all being is supposed to 
be, is beyond us non-noneists, and our human concept of object, one may 
suppose. Ryle challenged Meinongianism of abusing the expression 
“object”: 

…the important sounding word ‘object’ never did have any other positive 
function than to be a synonym for ‘subject-matter’ or ‘remark-topic’ (1973, 
p.257). 

That thoughts have representational content no one will deny, that thoughts 
have ‘objects’ beyond those representations is a far more substantial thesis 
and no obvious consequence of the observation on representational content. 
For noneism, however, everything depends on Holmes not just being a file 
of propositions attached to the expression “Holmes”, but being a unified 
something (an ‘item’). Noneism seems to trade on the almost imperceptible 
shift from ‘content of a thought’ (easily identified by citing the 
representation employed in the thought) to ‘object’ (as something beyond 

                                                
53 Thus even if there are major problems for noneism that need not tell against Dale 
Jacquette’s or Terence Parson’s theories of non-existents, which they claim go back to 
Meinong. The same applies to work done in the vicinity of Gegenstandstheorie (e.g. the 
papers in Haller 1995). In my eyes though, Routley is right in seeing his version of 
noneism as a proper articulation of Meinong’s main theses. Even if that is not so (i.e. if 
Meinong is misrepresented by the noneist), the challenge posed by noneism is worth 
considering in its own right. The reference to Meinong then has only a motivating 
function.. 
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its representation). As Priest stresses: ‘[A] noneist accepts objects of 
thought as genuine, not just as linguistic simulacra’ (2005, p.42). 

The noneist’s “there are” posits a “there” which we cannot locate and are 
not allowed to locate on pains of importing being into the theory. And 
“cannot locate” means here not just without location in space and time, but 
without being placed in any ‘realm’ like Frege’s or Popper’s ‘third world’ 
of thoughts or abstract entities. Chisholm (1973) once appropriately called 
the noneist’s objects ‘homeless’ as they neither are in the concrete realm 
(the universe) nor beneath the Platonic forms. The noneist’s “there” is 
equivocal when applied to ordinary objects, which exist somewhere, and 
non existing objects. 

The Independence Thesis itself seems, at least in the noneist’s reading, 
quite questionable. BEING-ROUND in case of the non-being round square 
cannot be the same manner of BEING- ROUND like in the case of a penny 
coin. BEING-GOLDEN in case of the non-being golden mountain cannot be 
the same manner of BEING-GOLDEN (i.e. having some physical structure) 
like in the case of the gold bar. All general terms seem to become 
ambiguous here!  

One may represent states of affairs involving existing and non-existing 
objects, and properties in the same format, say:  

 (1) <The golden mountain, Golden, 1> 

 (2) <Peter’s gold bar, Golden, 1> 

This, however, is only a formalisation at the level of an ontological theory. 
What we also need is an account what having a property comes down to. In 
case of physical objects we have such accounts (like trope theories or 
property realism). These theories cannot apply to non-existing objects. 
How, then, are they to have their properties? 

Again, describing an non-existent object as having some property does 
neither explain how it has that property, nor does it explain how this 
succeeds in the object ‘being there’. Usually speaking about something 
does not make it the case. Does this distinction have any application in case 
of non-existent objects? Even describing a non-existent object other than it 
was introduced in its characterization need not be a matter of falsity, since 
non-existent objects may be inconsistent. Even defining a non-existing 
object as “consistent” leaves it difficult to distinguish false claims about an 
object from changing the subject or extending the objects 
definition/characterization.  

Thus saying  

 (3) ‘[V]ery many objects do not exist in any way at all’ 

 (Routley/Routley 1973, p.227).  
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makes no more truth – or maybe sense – than saying  

(4)  The Arch-Supervisors co-inhabit collectively the hidden 
dimensions of Gaia. 

Noneists can hardly claim their descriptions and postulates to be acceptable 
to their audience by being evident. This applies as well to Routley’s 
distinction between reference (the supposedly bad idea behind most of 
today’s philosophy of language) and aboutness (the supposedly benign and 
non-committal relation between names and non-existents, inter alia).  
Instead of the Referential Assumption (RA) Routley endorses something 
like an Aboutness Assumption: 

 (AA) Every singular term is about some kind of being. 

On first sight (i.e. before becoming a noneist) this is a distinction without a 
difference. Especially if one holds that reference – as shown by definite 
descriptions – does not require a causal connection, there is nothing that 
sets aboutness apart from reference. 

To defend noneism it is not enough to stress that we understand talk about 
fictional objects and thus talk about non-existents.54  This understanding 
only counts for noneism if noneism was the only or best account of 
fictional objects, which, of course, is contested. We understand what it 
means to tell a story. 

Meinong (cf. 1904, §§2-3) argues in favour of noneism by pointing to (i) 
thoughts always having ‘objects’ as content, (ii) the countability even of 
things we know not to exist, and (iii) negative existence statements. (iii) 
has been dealt with by Russell’s or similar theories of descriptions and 
elimination of non-referring terms in favour of variables and predicates. (ii) 
ultimately reduces to (i) as the counting concerns objects of thought. So 
Meinong’s main argument claims that the intentional structure of thoughts 
(and indirectly sentences) has to be accounted for by positing objects of 
thoughts, every thought dealing with its objects. Meinong thus shares with 
the so-called ‘semantic tradition’ (cf. Coffa 1991) the thesis that thoughts 
have objective contents, which can be shared. But whereas the semantic 

                                                
54 Both Frederick Kroon (2008) and Daniel Noolan (2008) in their criticism of Priest 
are not clear on this point. Kroon bases his criticism on a problem with the properties of 
the fictional character Gandalf, and sees this as ‘an example of our apparent ability to 
talk about what does not exist’ (p.199). Noolan says, ‘Non-existents are also very useful 
as possibilia’ (p. 191), which for the noneist they are – often enough – not: They have 
not possible being, but no being at all. Meinong and Routley are perfectly clear on that. 
Priest employs possible (and impossible) worlds in his version of noneism, which 
complicates matters a lot, and which invites understanding non-existents as possibilia, 
as they exist in some ‘possible world’. On the other hand he is outspoken against a 
possibilia account of non-existents, for example: ‘I deny that quantification over 
something requires it to have any form of being’ (2008, p.214, Priest’s emphasis; 
similar: Priest 2005, p.14).  
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tradition sees these contents as sentences or their meanings (i.e. as 
representations or abstract objects) Meinong uses a generic concept of 
‘object’ and binds it to the Independence Thesis. Even if the positing of 
objects of thoughts was required by a conceptual analysis, say of 
propositional attitudes, the further step is an addition [see §4 above].  

There are other theories of intentionality and intentional objects besides 
noneism. Making a de re/de dicto distinction or employing a Free Logic 
accounts for the failure of quantifying into intensional contexts and related 
phenomena. Representational theories, which take propositional attitudes 
either as relation to representation of the language of thought or 
representation of a public language, provide a model of the attitudes 
without too much ontological commitment. The goal of ontological scarcity 
or simplicity – if that is a goal to adhere too – thus does not favour noneism 
over these theories, at least not to a degree which makes dealing with its 
extravagancies worth while. The crucial – and in my eyes not met – 
challenge to noneism demands arguments from the noneist which show that 
in the critical cases of non-existents “thinking of a as F” is not reducible to 
“having a representation: F(a)” (or a representation belonging into an 
equivalence class of translations or synonyms of: F(a)).55  

Noneism engenders epistemological problems both in accounting for 
reference or the substitute for reference, and for the truth of non-existential 
committal theories: Are there non-existent truthmakers for facts about non-
existents? Frege and other Platonists speak of a relation of grasping a 
thought. Relating to pre-existing thoughts or other abstract objects by such 
a faculty of grasping is one of the major and controversial topics in the 
philosophy of mathematics. In this case, however, the problem is simpler 
than the related problem for noneism. The Platonist has/postulates a ‘realm’ 
(a Fregean ‘Drittes Reich’), which is targeted by the grasping. Non-existent 
entities are not anywhere. Their being ‘entertained’ thus – if not just 
reducible to the representation of sentences – is far more elusive than 
Fregean grasping. Meinong himself (cf. 1904, pp.10-12) speaks of 
‘grasping’ a ‘pre-given’ (‘vorgegeben’) object, then rejects talking of 
‘quasi-existence’ and settles to the thesis that the contrast between being 
and non-being arises only with (complete) states of affairs, not single 
objects, which are, therefore beyond being. This, however, threatens to 
reduce objects to thoughts about objects in assumptions (presumably 
sentence like representations); and Meinong’s states of affairs (‘Objektive’) 

                                                
55   Priest (2005, pp.58-59) criticises representational accounts of propositional 
attitudes, without putting weight on these reflections. His main criticisms concern the 
problem of quantifying in and the problem of introducing an equivalence relation on 
representations without invoking the objects they are about. The first may be answered 
by some Free Logic account (with possibilia, say), the other by some form of inferential 
role equivalence between representations.  
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are (sometimes) said to be non-existent themselves (cf. 1904, p.6)! The 
non-existence of states of affairs is also very explicit in Routley and Priest. 
So with respect to grasping a non-existent nothing is gained here. Meinong 
ultimately declares that every object could be known, and everything that 
could (!) be known has ‘givenness’ (‘Gegebenheit’, p.20). ‘Given where by 
whom or what?’, one inclines to ask. Later Meinong (1921, p.20) stresses 
that grasping is something ‘ultimate, indefinable’ (‘ein Letztes, 
Undefinierbares’). The faculty of grasping an non-existent object, so, is a 
theoretical postulate in Meinong’s theory. 

Priest also at one point (2005, p.142) posits a faculty of ‘pure intention’, 
which is able to bring us into contact with any object whatsoever. He 
provides no account how this faculty works in detail. Further on, he claims 
phenomenological evidence for acts of object access: 

[W]hen one fears something, one has a direct phenomenological experience 
of a relation to the object of the fear. And the phenomenology is quite 
independent of whether or not the object actually exists. (Priest 2005, 
pp.57-58) 

As often with phenomenological evidence claims this one seems open to 
disagreement: Does one not rather experience the content of one’s fear, 
whether or not it is (semantically) linked to an object or not? What would it 
be like to experience an object simpliciter, in any case? A representational 
theory seems closer to the phenomenology. 

Priest ultimately tries to soften the access problem by moving his version 
of noneism closer to fictionalism and RTF:  

The properties of Sherlock Holmes may be just as a priori as those of 0. In 
both cases, we characterise an object purely by fiat. We know a priori that 
the object so characterised has those properties (at certain worlds), and this 
is so whether the characterisation is provided by what is told in Doyle’s 
novels or by the Peano axioms. (Priest 2003, p.9; cf. 2005, pp.145-48) 

In fact, somewhat against the spirit of Routley Priest’s noneism is more a 
fictionalism than noneism. Priest – like the fictionalist – regards fiction as 
false. Priest also regards it as possibly true (i.e. true in the worlds of 
fiction). If α is any claim about the non-existence entailing properties of a 
mathematical entity, the noneist should claim α to be simply true, whether 
the mathematical entities are existent or not (as they are not, of course, for 
the noneist). Priest has to say that α is true at the worlds in which the 
entities exist, i.e. has to take α as possibly true. At the actual world it is 
true: �α. Mathematical statements become intensional. Priest so endorses a 
revisionist theory not only of mathematical ontology, but of mathematical 
truth as well. If that saves noneism then it does so only at the price of 
moving towards fictionalism and trading in the problems of fictionalism. 
As Priest uses the strategy of entities at some world not just for 
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mathematics his theory – despite (Priest 2008, p.214; 2005, pp.14, 42) – 
looks rather like a theory of possibilia in a paraconsistently extended Free 
Logic than like Routley’s or Meinong’s theory of non-existent items.56 

The criterion (O2) of coming into contact with entities of a proposed type 
seems questionable if an ontology itself entails that there is no (causal) 
contact to these entities. Noneism here resembles those versions of 
Platonism which deny that abstract entities interact with the physical world. 
As noneist ‘items’ are not existent requiring access seems requiring too 
much. But this is the basic problem with noneism again: ‘items’ are said to 
be ‘there’, thus are not nothing, or – again – the whole theory seems 
incomprehensible. A fictionalist invents stories and thereby accesses 
fictions easily. Noneism claims to be something different from fictionalism, 
but it seems it cannot. 

Noneism is incompatible, further on, with any form of semantic 
externalism, as externalism typically invokes some causal mechanisms of 
hooking up concepts and lexical items to properties in the world. 
Noneism’s attack on the Referential Assumption has to apply to properties 
and ‘content’ as well. As many epistemologists and semanticists support at 
least some version of externalism noneism calls for a far and wide revision 
of these fields as well, respectively is put into doubt by the success of 
externalist accounts. Externalism has its own problems with fictions, but 
any progress here helps fictionalism – again – and not noneism. 

Noneism in denying being to inconsistent objects is too weak as foundation 
of paraconsistent set theory, since sets – unless you believe in noneism – 
are usually taken to exist (even if not in space in time). Noneism certainly 
is no version of realism. 

Noneism is either a version of a substitutional understanding of individual 
expressions such that we can use a non-referring expression and tell a story 
in which this expression occurs (for example a story about a unicorn) in 
which case intensional contexts are to be understood in some way 
paratactically in the tradition of Carnap's intensional isomorphy or 
Davidson's saying that  – or noneism is not comprehensible at all. 

 
                                                

56  There are a few additional problems with circularity for Priest’s account, it seems. 
Firstly, possible worlds are considered to be non-existents as well. So what can it mean 
that all non-existents exist at some world? Priest’s version of Characterisation has 
worlds ‘realize’ other non-existents and their properties. As worlds are taken as non-
existents, where do they get realized? Or can they realize without being realized 
themselves? Worlds seem to exist at themselves. Secondly, discussing the question how 
non-existent mathematical objects can be used to describe reality (the actual world) 
Priest claims that the physical quantities and the mathematical quantities ‘have the same 
structure’ (2003, p.12; cf. 2005, p.150-51). But a structure is a paradigm case of 
something abstract, thus non-existent for Priest. A regress seems to ensue.  
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(2)  Incompletability 

One of Cantor’s arguments in favour of transfinite numbers was the 
naturalness of extending the successor function and the taking of unions 
beyond the finite. Once one has understood that the finite sets as a 
collection have to be taken in a set as their collection, one naturally extends 
the order ω of this set to ω+1, ω+2…  Who admits the ascent to ever larger 
natural numbers cannot resist the ascent to ω and above. (Therefore strict 
finitism attacks already at the first ascent.) 

The picture behind the iterative hierarchy seems to contain the idea of 
indefinite extensibility. Whatever axioms of large sets we add we can 
imagine the ‘process’ of set generation going on from there beyond these 
intermediate halting points. Incompletability seems to be built into this 
picture of sets. No collection provides a natural stopping point to any 
further ‘construction’. 

Can we comprehend incompletability? Properly speaking – as we are not 
talking about processes of reasoning or construction, but about ontic 
structures: Can we comprehend an incomplete universe? 

The concept seems to be beyond comprehension as it is logically true: 
Everything that exists exists. Whatever is in the hierarchy is. Thus – we 
seem to be forced to go on – it is somewhere. Thus this somewhere cannot 
be incomplete. 

The concept which causes these conundrums is the concept of 
quantification. Once we subscribe to the idea that quantification requires a 
domain we are set for trouble. But how could QUANTIFICATION and DOMAIN 
OF REFERENCE ever become decoupled? Does our conceptual system allow 
for – or even contain – a concept of quantification without domain? 

Raised in standard meta-logic we are accustomed to assume not only a 
domain, but we see this domain as another thing, which then ‘of course’ 
has to be contained in its (i.e. another) domain. 

The INDEFINITE is a crucial concept in Hilbert’s finitism. Speaking of an 
indefinite object seems to allow having an object of arbitrary size without 
committing oneself to quantifying over a domain of infinitudes. Hilbert 
also invented and used his ε-operator to this purpose. 

Hilbert’s finitism (Hilbert 1925) was not directed against the idea of the 
ever larger infinities of ‘Cantor’s paradise’, but was inspired by the idea of 
secure foundations for talk of infinity, where in these foundations 
(considered as meta-logic) the notion of the infinite was not to be 
presupposed. What is interesting even for the critic of infinities in Hilbert’s 
finitism is his method of trying to work around the commitment to actual 
infinities (cf. George/Velleman 2002: 147-72; Shapiro 2000: 158-65).  
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Hilbert wants to justify set theory and Cantor’s theory of transfinite 
numbers by using only finitary arithmetic in the meta-theory. Finitary 
arithmetic includes equations and their truth functional combinations. Also 
sentences with bounded quantifiers, like “(∀x<120)”, are admissible. Any 
combination of such sentences is effectively decidable (by dealing with 
finitely many specific numbers and their properties). Now, to include some 
generality (i.e. to be able to make general statements like the commutativity 
of addition) Hilbert introduces schematic letters: a, b…. One can thus 
express 

 (CA) a + b = b + a 

Hilbert considers a statement like (CA) to be finitary! The idea is: Which 
ever specific numerals we choose to replace “a” and “b” the corresponding 
statement will be an acceptable (decidable) finitary statement.  

Whereas in standard logic one typically reasons 

 (UG)  For some arbitrary x: F(x) 

   … 

   G(x) 

  Thus: (∀x)(F(x) ⊃ G(x))  since x was arbitrarily chosen 

the finitary reasoning is different. (UG)-like reasoning infers to the totality 
of the domain. Finitary reasoning rather argues:  

 (FG)  The following proof scheme is valid for any instance: 

   P1(á) 

   … 

   P2(á) 

  Thus: P1(á) ⊃ P2(á) 

Nothing is supposed about a totality of objects. It is rather provided a 
scheme to turn the assumption P1(á) for any given or thought of individual 
term into a proof of P2(á). One might express this as the dialogical 
challenge ‘Once you name the object, I will provide the proof that it is 
well-behaved as well.’ 

Employing the Wittgensteinian distinction between saying and showing 
one can understand the distinction between (UG) and (FG) as having (UG) 
saying what (FG) only shows, where, of course, Wittgenstein, who after 
1929 took a position close to the use of schemata by Hilbert or Skolem (cf. 
Marion 1998), would add that what (FG) shows cannot be said at all, since 
there are no completed infinities. 
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Since no totality of objects to be quantified over is presupposed one need 
not assume even that there is a totality as the infinite set of natural 
numbers. One just claims that theorems can be proven for any number 
expression that someone comes up with. Since this is a general claim about 
forms/schemata of theorems – what else should one wish for in arithmetic? 

Apart from the difficulties with Hilbert’s larger program (like the 
incompleteness theorems, especially Gödel’s Second Incompleteness 
Theorem) finitism in this sense has its own difficulties. What to think, for 
example, about the negation of schemata like (CA)? One might think they 
are equivalent to sentences or schemata with an unbounded existential 
quantifier. Hilbert thus sees them as ‘transfinite propositions’, i.e. as 
illegitimate in finitism.57 

Nevertheless one may take up the idea of schematic representation. Do we 
have some additional faculty of schematic abstraction? That needed some 

                                                
57  And even excluding negations of schemata like (CA) seems to leave one with 
primitive recursive arithmetic (cf. also Tait 1981). Remember that the primitive 
recursive function do not include µ-minimization. Primitive recursion comes down to 
bounded quantification. To have the usual means of logic available Hilbert allows these 
non-finite formula in, but considers them as ‘ideal’ (i.e. devoid of respectable finitist 
content). Formulas are only considered in their inferential role. The formulas 
themselves can then be taken as the new (material) objects of this reasoning. Thus 
finitism gives way to formalism.  
Three side remarks may be in place here. The first concerns strict finitism as a 
radicalisation of finitist ideas. In case the universe is complete there are two options: it 
is finite or it is infinite. Most set theories we have considered – in any case all used in 
mathematics – are committed to many different infinities. A universal set within any of 
them or an updated version building in U has U as infinite set. For the strict finitist, on 
the other hand, U as well as all other sets have to be finite sets. This leads to some more 
peculiar features of strict finitism (besides, say, its limitations of self-reference by 
having limited resources of coding).  
The second side remark concerns the idea of indefinite extensibility in relation to 
Gödel’s Incompleteness Theorems. By Gödel’s Incompleteness Theorems we know that 
unfortunately standard consistent set theories are negation incomplete in arithmetic. 
When we start with axioms of larger cardinalities we establish stronger set theories. As 
stronger theories can prove the consistency of weaker theories we have in a theory 
ZFC+ some theorem stating the consistency of ZFC. This theorem – by way of 
Gödelization – has to be an arithmetical truth not derivable before. Thus even standard 
arithmetic seems extensible by this procedure. The extensibility of arithmetic, however, 
cannot be indefinite. There are not enough arithmetical truths. If an arithmetical 
property is modelled by a number set there can only be ℵ1 many questions: for ℵ0 
many numbers we can ask whether they are in one of the ℵ1 many sets. Arithmetical 
extensibility is limited. If we add indefinitely many axioms of large cardinalities the 
preconditions of Gödelization finally give in as well. 
Thirdly, one should not confuse the incompletability envisaged for the ‘universe’ of sets 
with ‘productivity’ in computability theory: productive sets can be extended, but as this 
extending concerns recursive enumerability the extended sets have a definite cardinality 
in the lower infinite. 
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explanation. The ineffability problem raises its head. Postulating a basic 
faculty of schematic intuition deserves – at least – not more credit than 
postulating a faculty of intuiting V. One may ask in general what 
understanding a schema – especially one over an arbitrarily extensible 
‘ream’ of individuals, not over countable many well-formed formulas of a 
specified language – comes to. Is it not just to understand that some 
schematic representation is true/well-formed/valid for all its specifications? 
In understanding the schema we seem to have access to the domain of its 
instances (respectively the domain that these instances are talking about). 
In this case we seem to have a strong intuition in favour of some Domain 
Principle.  

Dropping the universal quantifiers and reversing to substitutional schema 
or rules instead of axioms in set theory does not help either, as there are 
neither enough names around for substitution (names being countable 
anyway) nor do we get rid of embedded universal claims so easily: just 
look at the Axiom (schema) of Replacement. 

So, the idea of an incomplete universe does not far well in face of condition 
(O1): our concept of quantification seems to be tied to a Domain Principle, 
which cannot be circumvented by talk of the indefinite or schemata. The 
incomplete universe resists stable quantification. If the universe is 
extensible and grows – between different times? – universally quantified 
set theoretic sentences shift in meaning – at least in their truth-conditions – 
as their domain of reference shifts!  

Another way to get rid of or ignore the Domain Principle may be to rest 
one’s understanding of quantification solely on the semantic rules for 
quantifiers (i.e. introduction and elimination rules), similar to so-called 
‘anti-realistic’ theories of meaning (cf. McGee 2006). Semantic rules may 
be (partially) constitutive of meaning, at least for logical vocabulary, 
explicitly definable. Understanding the rules for “�” and “�”, however, 
involves somehow – it seems to me – thinking of the source where the 
instantiation terms or assigned values of variables come from, i.e. a 
corresponding domain. 

And even if we drop the Domain Principle we have not made the idea of a 
thought independent but at the same time incomplete universe of sets any 
clearer. In the context of set theory no further objects can come into 
existence. The status of the universe itself as an object of incompletable 
nature awaits elucidation. The whole idea has an radically anti-realistic 
flavour, foreign to the set theories discussed here. 
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(3)  V as entity sui generis 

Given the difficulties in understanding an incomplete universe and the 
fundamental role of a Domain Principle, why don’t we just talk about V 
without assuming it to be the value of a bound variable? This appears 
reasonable as doing otherwise land us in an incomprehensible framework 
of indefinite existents. 

Assume we do not give up on the infinite, whether we are Platonists or 
fictionalists or whatever else. There are then infinite collections. 
Comprising within them all of a kind not collectable itemwise by finite 
beings. We collect them using our concept COLLECTING. If we talk about 
the Fs we naturally assume that there is a collection F where they are in. 
Cantor’s Domain Principle expresses this idea that the Fs we quantify over 
or talk about can be collected into a totality. Sometimes the totality has to 
be of another type to avoid antinomies (e.g. in the set/class-distinction). As 
there seems to be no limit to this procedure we always progress to a wider 
domain.58  The Domain Principle thus enforces the idea of the incomplete 
universe. A domain is added to the objects, giving a larger domain, which 
is added to the objects – and so on. 

Unless, that is, we meet a fixed point in this progression. Informally, the 
totality of things to be thought of or to be talked of can be thought or talked 
of: it belongs to the very domain it defines. Thinking of ‘the domain x is in’ 
applied to it leaves us at it. Thus it may be called a fixed point of the 
Domain Principle. 

Is U of this type? Having U�U requires several other adjustments in set 
theory. And they do not come cheaply – up to inconsistency. 

As intuitive as the Domain Principle may occur to us, leading us up the 
ladder of the indefinite may be too much, as we have seen above. We might 
accept that the whole construction has a limit: a collection beyond further 
collecting. There lays the naturalness of Limitations of Size: There is one 
size too big to be collected into a set. This collection better not be the set U 
to avoid severe complications in set theory, otherwise rather intuitive. So 
one may see the idea behind Limitations of Size without endorsing NBG or 
MK, or any other set/class-theory. Nothing is gained by having (several) 
classes. With a collection of classes the question of their collectability 
immediately arises. 

The single limit object V might be different. 
                                                

58  Recently Rayo and Williamson (2003) and others have argued for ‘unrestricted 
First-Order languages’, i.e. for quantification without a domain. The formal proposal, 
however, must employ SOL and a richer meta-language for which similar problems 
arise. One may also consider the employed SOL as critical and problematic (cf. Weir 
2006). Unrestricted quantification is only unrestricted beyond an object/meta-language 
distinction. 
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If that limit object V exists – neither a set, nor an extended set like an 
inaccessible cardinal, nor a class – ZFC is consistent. And if our intuitive 
notion of set rather endorses the General Continuum Hypothesis we add it 
as well: ZFGCH is consistent, if V exists. Our notion of set suits V, and 
vice versa.  

This conception of V as collecting all the sets but being a special limit 
object may correspond better to our concept SET than taking set theory just 
as the realm up to the first strongly inaccessible cardinal. [The Cantor quote 
setting the theme of this book may illustrate this perspective.] Someone 
might argue that our concept SET takes us thus far, but that there are other 
mathematical objects and theories (especially those of large cardinals, 
measures etc.), which pick up the baton where ZFC hands it over. 
Although this sounds like a nice division of labour, the large cardinals are 
too set-like to provide a natural boundary to our concept SET, supposing it 
to fit to ZFC in the first place. V is a stop point, the first inaccessible 
cardinal is not. And large cardinals – again – give rise to the question 
where their hierarchy is collected in, inviting and requiring V or some V’, 
landing us again in an incomplete universe. V is not an incomplete universe 
at all: although we cannot walk, count or ‘powerset’ us up to it, V contains 
all sets; they are not in the making, there are no processes of indefinite 
extension going on. In this respect V as an object at the limits of thoughts 
differs from the row of experiences discussed by Kant in the Critique of 
Pure Reason: Kant traces the antinomies to their common error of taking 
the series of experiences, which is only given piecemeal and prospectively 
(‘aufgegeben’) as a ‘given’ totality. As experiences are obviously under 
temporal construction their series can never be united – by whom? In an 
experience? Sets, in contrast, are not (temporally) constructed and thus 
should be collectible in a unity. Thus far we are carried by the Domain 
Principle. At that limit we ‘simply’ have V as an object, and stop adding it 
to a domain. 

Our concept of SET may force stronger set theoretic axioms on us. This 
shows, however, not the incompleteness or growing extension of V, but the 
incompleteness of a theory like ZFC. Urelements and ∅ have no members, 
but are members; sets have and are members; V has members, but is not a 
member: it occupies a slot in conceptual space.59 

In the light of the two criteria (O1) and (O2) we may say: our idea of V is 
an idea contained and connected to our concept SET. The special nature of 
V is forced upon us by the unfeasibility of the idea of an incomplete or 
thought independent but growing set theoretic universe. We know of V by 

                                                
59  The slot of neither having members nor being a member finds no existing filler, if 
there is not David Lewis’ atomless, uncollectible ‘gunk’. 
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the picture we have of the iterative hierarchy and the structural relations 
between the ranks. 

This conception of V follows some intermediate path between the two 
ontological traditions in analytic philosophy. On the one hand there are 
reasons of conceptual analysis why V suits our concept SET. On the other 
hand some peculiar postulates need to be laid down for V. “V” is a rigid 
designator naming an entity which does not belong to some domain of 
quantification, although all other entities and referents of names do! 

The major difficulty here would be to allow for a level or form of meta-
theory when talking about V which is outside of any formal system. That 
way may lay ineffability or some version of ontological semantic mystery! 

 

* 

 

Comparing noneism, the incomplete universe and the thesis of V being an 
entity sui generis, the third idea comes out best in its combination of 
conceptual analysis and axiomatic ontology.  

If we do not want to follow this path and acknowledge the problem of 
talking about V outside of ZFC a paraconsistent universal formal system 
seems to be obligatory. A system that integrates theory and meta-theory. 

 

 

(4) Inconsistent Platonism 

As mentioned before Ballaguer (1998) defends Plentitudenous Platonism as 
an option in the philosophy of mathematics, since Plentitudenous Platonism 
can meet both criteria (O1) and (O2). Platonists like Frege in his 
Grundlagen der Arithmetik (1884) argue at length that Platonism is more 
natural and more embedded into our conceptual intuitions than any rivals 
like naturalism, psychologism or constructivism. Although we cannot get 
into direct (causal) contact with abstract entities if we possess no faculty of 
logical intuition, we can have beliefs about them which may turn out to be 
true. If all consistent abstract realms exist and we have an independent 
grasp of consistency, we have justified beliefs which are true. Ballaguer 
argues in favour of an independent sense of consistency of a (formal) 
system or construction: noticing consistency is taken as a faculty 
independent of an elucidation of consistency in model theory or logic (cf. 
Ballaguer 1998, pp.48-75). 

Now, consistency can, of course, not be required of paraconsistent 
constructions or formal systems. These system and constructions, however, 
employ non-triviality as their substitute for consistency. A system has to be 
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shown to be non-trivial, even if inconsistent. One can thus endorse the 
position of Hyper-Plentitudenous Platonism: all non-trivial abstract realms 
exist. This Inconsistent Platonism inherits all the virtues of consistent 
Platonism (i.e. the arguments concerning the applicability of mathematics 
etc. can be used here as well). One has to claim that we possess an 
independent faculty of discerning non-trivial but nonetheless coherent (i.e. 
systematic and explanatory) formal constructions and systems. I don’t think 
that this is much more than is demanded by Plentitudenous Platonism. The 
whole development of paraconsistent logics in the last 35 years bears 
witness to this. In fact one may assume that we even more easily grasp non-
triviality than consistency. Therefore Inconsistent Platonism or Hyper-
Plentitudenous Platonism is an option! 

The theory fits paraconsistent set theories and circumvents the troubles 
noneism runs into. Object talk and quantification are understood as always. 
They only – but obviously tremendous – difference to the common 
understanding of sets as abstract entities is the thesis that there exist many, 
many inconsistent abstract entities.  

Inconsistent ontology is hard to swallow when talking about objects in 
space and time: How can it be that there is at some location in space time 
some atomic structure and yet another or the absence of the first? For 
abstract entities this is different: possessing two inconsistent properties 
means possessing two properties so that one of them implies that a sentence 
negating the possession of the other is true of the object in question. This 
makes a contradiction true of the objects in questions. Dialetheists endorse 
such contradictions. They argue that having a proof for each side of the 
contradiction no more can be required in standards of justified belief. As 
abstract entities are not in space and time – or at some other place – the 
incomprehensibility of possessing two contrary properties simply does not 
apply. Often we are endowed with criteria for attributing F and another set 
of criteria for attributing non-F. If these independent routes of justifying a 
property ascription lead to a contradiction, then so be it for the Dialetheist. 

Inconsistent Platonism in addition to meeting (O2) like the Platonist and 
inheriting some general arguments for Platonism meeting (O1) brings with 
it further resources in meeting (O1):  

• all those intuitions in favour of the existence of U (i.e. that our 
concept of SET entails the existence of a collected unity of sets),  

• all those against a set/class-distinctions (i.e. that we have one basic 
concept ABSTRACT COLLECTION, which is not divided into SET and 
CLASS, a distinction introduced only be the needs of some theories in 
mathematics), 
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• all those against the incomprehensible idea of an incompletable 
universe (i.e. in favour of the thesis that QUANTIFICATION is tied to a 
Domain Principle), 

• all those against special objects we can talk about, but at the same 
time have to exclude from a broader domain of quantification (i.e. 
against a liberal use of axiomatic ontology to ensure a special status 
for V). 

Thus Inconsistent Platonism is a live option, it seems. The main difficulties 
with Inconsistent Platonism are also obvious: One may not like abstract 
entities in the first place, and one may not like inconsistent ontologies at 
all. 

 

* 

 

If an inconsistent or noneist ontology is too much to swallow when taking 
on such a paraconsistent system, then we have to opt for at least partial 
fictionalism with respect to (some) entities proposed within paraconsistent 
set theories. Then the exploration of universality in set theory naturally 
awaits a further thorough exploration of fictionalism. Too many difficult 
questions wait there: Fictions like fictional characters in literature depend 
historically and genetically on their authors, and maybe on still existent 
copies of the literary work and living readers (cf. Thomasson 1999), 
nothing of this sort can be said of pure sets. Pure sets (like in ZFC) are not 
just presented as abstract entities outside of space and time, but their 
presentation (the story told by ZFC) arguably does not depend on any 
particular set theorist – not even Cantor, Frege or Zermelo. There might be 
several intermediate ontological categories between such purely abstract 
entities and spatio-temporal entities (cf. Thomasson 1999, pp. 120-33). 
Even in ZFCU one may wonder about the singletons of contingent 
urelements like the Cologne Cathedral: It seems bizarre to assume it to 
exist before the building was finished or even planned, thus this set seems 
to have a historical place! The recent interest in fictionalism may lead to 
increased ontological options – but don’t hold your breath! 
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ABBREVIATIONS AND NOTATION 
 

 

Standard symbols are used: ∀, ∃,
, ∪, ∩, ⊃, ⊆, ∧, ∨, �, �, ×, ¬ … 

℘(x)  is the powerset of x. 

|x|   is the cardinality of the set x. 

→ is a relevant conditional 

� is used in rule statements 

 

Greek letters ϕ, ψ … are used as schematic for unspecified formula or 
predicates (open formulas) of a given language. Γ, Σ, Π are mostly used for 
sets of formulas. 

 

CAPITALIZATION is used to signal that we now talk about a concept. 

Single quotation marks are used in quotes and as ‘scare quotes’ of 
established theoretical terms. Double quotations marks quote an 
expression. Names of famous theorems are italicized.  

 

M  is the set of urelements  

U  is the universal set 

V  is the complete iterative hierarchy, Vα a rank in the hierarchy 
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