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Any mathematical consideration must
be founded on the notion of ‘allness’ or
‘quantification’ as a basic category of
logic which cannot be subject to further
analysis whatsoever.

(Ernst Zermelo)

What surpasses all that is finite and
transfinite 1s no “Genus™; it i1s the
single, completely individual unity in
which everything is included, which
includes the “Absolute”, incomprehen-
sible to the human understanding.

(Georg Cantor)
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INTRODUCTION

This essay discusses the fate of universality and a universal set in several set
theories. It presupposes a general background in logic and general
knowledge of set theoretic basics. Even basic points are repeated if the
context of discussion profits from a short reminder, but no systematic survey
of the different systems is attempted. The book aims at a philosophical study
of ontological and conceptual questions around set theory. A formal
exposition of some consistent set theories with a universal set and related
theorems can be found in (Forster 1992) and the sources mentioned there. A
comprehensive formal exposition of paraconsistent set theories does not yet
exist; some sources are mentioned in chapter V.

Set theories are ontologies. They posit entities and claim that these exhibit
some essential properties laid down in the set theoretical axioms. Like
Zermelo (in the opening paragraphs of Zermelo 1908) Fraenkel, in his early
introduction to set theory (1919/1928%) explicitly outlines this axiomatic
approach:

According to the essence of this method we refrain to define the concept of
set or to analyze it, we rather start with some axioms in which the concept of
set like the relation ‘to be contained as an element’ occurs, and in which the
existence of some sets is postulated. The concept of set is implicitly
established by the totality of these axioms.

Collecting these postulated entities poses the problem of universality. Is the
collection of the set theoretical entities itself a set theoretical entity? What
does it mean if it 1s, and what does it mean if it is not? To answer these
questions involves developing a theory of the universal set. For a start we
may define the universal set as U = {x | x =x}.! As set theories extend first
order logic with identity (FOL) or some variant of it (in a non-standard logic)
they contain the axiom: (Ox)(x = x). U thus comprises the whole domain of
the language. Tautologically whatever exists exists. So, supposedly, there
are all existents. Why not continue: So there is the totality of these existents?
Why shouldn’t they be collectible? After all, set theoretical quantification
runs over all sets, doesn’t it? If, however, that totality was an additional
entity we could collect another totality including it — and so forth, it seems.
Unless this totality possessed a nature sui generis, setting it apart from
ordinary things and sets.

' Standard symbols are used. See the appendix on notation.



Some of the set theories are pure set theories: their domain consists entirely
of sets, all variables range over sets. Some of the theories contain proper
classes in addition to sets (improper classes). Some theories contain
additional ‘urelements’ (i.e. objects which are neither sets nor classes, but
something to be collected into sets or classes). Some other theories use
numbers as basic entities, not reduced to set theoretic construction. The
discussion here will mention these differences, but will not use a neutral
formalization, which applies to all theories; this would require using one type
of variables and sortal predicates like “set”, “ordinal” etc. to restrict
quantification to the appropriate type, e.g. “(Vx,y)(Set(x)ASet(y) o ...”. The
drawback of this formalization would be its contrast to the respective
textbooks and articles. Additionally it would be very cumbersome, e.g.
having all the sethood statements in pure set theories like Z, the
axiomatization of which would include now a new axiom “(Vx)Set(x)”,
which had to be used all over to get rid of the sethood requirements in the
antecedents of statements. Thus when discussing mixed type systems sortal
predicates may be used, but not with pure set theories, and not with systems
which only distinguish sets from (proper) classes; in the latter case lower
case variables refer to sets, upper case variables to (proper) classes.

The existence of urelements is important for the broader ontological picture,
but the presence or absence of a basic set of urelements does not change the
treatment of universality in many set theories (like ZFC). One may ask
oneself what sort of things might be chosen as urelements. If physical entities
are chosen, there are — in the light of our best physical theories — only finitely
many of them, which can be collected into a set of urelements. Physical
objects may have their own principles of composition (like mereology).
Their presence does not influence the question whether all sets can be
collected into a universal set. Once sets are present, there seems to be no
need for further elementary logical (abstract) entities like numbers. A
collection of urelements that matches the sets in cardinality seems highly
dubious, as one may suppose every urelements to have a singleton and any
two of them to be elements of their pair set — etc. In some cases (like
Specker’s Theorem [in Chap. IV]) we have to talk about urelements.

Several issues related to set theory will not be discussed here: We are not
much concerned with the epistemology of mathematics in general or set
theory in particular. With respect to epistemology all the theories discussed
here are prima facie in the same boat. We may, however, raise some
questions concerning whether understanding universality raises additional
epistemological problems. We start with the ordinary working assumption
that we have some concepts and ideas of sets and numbers and set theory
tries to systematize them. Therefore we will not be concerned with the

8



general issue of abstractness or ‘Platonism’ either. Again, prima facie, all the
theories discussed here are in the same boat. We may raise some questions
concerning whether some ways of understanding universality or the set
theoretic universe raise additional ontological problems.

For the set theoretical anti-realist our study is just a case study in formal
ontology and its models. Nonetheless some such ontologies might be more
useful than others even if all are — strictly speaking — false, as there are no
sets whatsoever. Even if there are no sets some set ontologies may be more
helpful fictions than others. They help in systematizing mathematics, which
again, even if without subject matter itself, helps as part of science in
describing reality. Even Russell held at times that sets are just a manner of
speaking, but not part of the furniture of the world (cf. Russell 1914).
Nonetheless as they correspond, for Russell, to the fundamental
‘propositional functions’ talk about them is neither arbitrary nor idle. One
theory is singled out as capturing or founding our mathematics.?

For the set theoretical realist one set theory might be better in capturing set
theoretical reality than another. Either one has to assume U or one has to
assume that U does not exist. Our study then is one attempt to ascertain
which option we have to take. Even if one endorses ‘plenitudinous
Platonism’ (the thesis that al/ consistent mathematical theories correspond
to some part of the realm of abstract entities®) the issue of U is not idle. The
different set theories might then be taken to deal with different areas of
abstract entities. In one area there might be something like U in the other
area not. Nonetheless, one may argue that one of the areas has more right to
be considered as making up sets as we have an intuitive notion of SET, which
may be explicated better in one theory than in another. Even if there are
several areas of abstract entities which are set-like one area may be the
intended standard model corresponding to our concept of SET. In this
perspective our study is concerned with the conceptual issue of analysing
our concept of sets. Comparing the different theories and weighing the
advantages and disadvantages of incorporating U into a set theory (i.e. the
gain and the strain of related theorems/facts in relation to our intuitive
understanding of sets) we may come to a result whether our intuitive concept

2 TIronically Russell demanded at that time, of course inspired by the antinomy of the

set of non self-membered sets, that saying either that a set is a self-member or that it is
not should be meaningless (not just false). A requirement which excludes the Axiom of
Foundation. Naturally Russell thought in terms of his theory of types, which by definition
fulfils this requirement, but, nevertheless, was laying down conceptual constraints on a
feasible concept of set.

3 Cf Balaguer 1998. The view that consistency proves sufficient to take a
mathematical theory seriously has many variants. These include Hilbert’s formalism and
fictionalism, a theory of course denying the existence of abstract entities. Included is as
well Cantor’s ‘theological Platonism’, which has all consistent transfinite entities existing
as ideas in God’s mind.



SET involves the assumption of a universal set or rather some other picture.
Even if set theory was not of sets in the referential sense (as there might be
no sets at all) set theory would be of sets in the intensional sense of setting
out our conceptions of sets. And our question here is whether the universal
set crucially belongs to these conceptions, or whether it is an idea at the
periphery of these conceptions, only to be rejected on second thoughts about
its consequences.

ZF asserts that some collections we have naively thought of as sets (the set
of ordinals, cardinals, the universal set) are not sets — i.e. they do not exist
for ZF itself. Most surprising is this claim for U, as {x| x = x} seems so
natural. That our untutored intuitions have to be partly corrected at the
foundation of science, however, occurs not just in ZF but — one may well
argue — at the foundations of physics (e.g. with our untutored intuitions about
the locality of particles or the properties of time) or in biology (e.g. with the
changeability of some organisms’ essence/species). Thus the mere correction
of our prior, untutored understanding of a basic concept does not establish in
itself that ZF goes wrong. The argument has to concern whether this is the
best option, what repercussions this step has, and whether the resulting
concept of sets provides a more coherent (unified and comprehensive)
understanding of sets.

The antinomies of semantics and set theory have to be treated somehow to
provide a coherent systematic account of the notions involved. The same
applies to the presupposed concept UNIVERSALITY in set theory. One can well
do in large parts without treating these problems. Many a textbook works
with informal set theory. They miss then, however, a comprehensive account
of sets. What their success — inter alia (compare similar arguments in
semantics) — shows is that the problems occur placed within an otherwise
viable world view or viable procedures in semantics or set theory, say some
version of semantic realism or of constructive representationalism. I,
therefore, neglect theories that argue from antinomies and universality to
some form of mysticism, ineffability, anti-representationalism, or what not.*

The following issues set the theme for much of the discussion here:

1. How can one avoid slipping into a ‘theory’ that universality is
ineffable?

4 Patterson (2008) extends his anti-representational program to mathematics.

Postmodern authors endorse Wittgenstein’s Tractarian mysticism about ineffability.
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2. Are there different aspects to universality in set theory, which stand in
conflict to each other?

3. What aspects of universality are embedded within our concept SET?
4. May inconsistency be the price to pay to circumvent ineffability?
and most importantly:

5. How far can axiomatic ontology take us in postulating our way out of
the problems around universality?

Chapter I starts with the treatment of universality in standard set theory ZF.
This raises issue (2): universal comprehension and universal collection (into
a domain of all sets) seem to be incompatible. The approaches considered in
chapters I — V raise issue (5) of axiomatic ontology. As already in chapter |
the spectre of ineffability, i1ssue (1), raises its head. Some systems engender
their own incompatibilities between aspects of universality (like the tension
between the universal collection into a domain vs. universal possession of a
singleton), issue (2) again. And we have to ask which of the systems have a
claim to be more ‘natural’ or ‘intuitive’ for us, issue (3). Chapter I also
articulates one picture of universality: the iterative hierarchy. Articulating
this picture raises issues (1), (3) and (5). Chapters II asks whether the
problems can be avoided by moving either to Second Order Logic (SOL) or
to an abstract realm ‘broader’ than the one of set theory, category theory for
instance. Issue (4) is confronted in chapters V.

Although this is a systematic study (i.e. not an historical investigation into
the development of several set theories) sometimes it may be illuminating to
mention and consider side-remarks made by their foundational authors. In
these remarks one can at times discern the broader ontological picture the
author works with.’

> As this is no detailed historical study I often omit giving the detailed source of a side-

remark, but refer the interested reader to the comprehensive studies by Ebbinghaus (2007)
on Zermelo, Dauben (1979) on Cantor, as well as (Lavine 1998). Some remarks have
entered the set theoretical folklore and can be found in many introductory books (e.g.
Potter 2004) or (Deiser 2010), which contains many quotes of the founding fathers,
following the development of set theory.
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[TERATION, FOUNDATION, AND REFLECTION

ZFC has become in its first order axiomatization the accepted set theoretic
standard. We take, as usually done, as Z the system containing the Axioms
of Extensionality, Pairing, Powerset, Sums, Separation and Infinity. ZF adds
Foundation and Replacement, like Separation an axiom schema. ZFC adds
the Axiom of Choice.® ZFC+GCH adds the Generalized Continuum
Hypothesis to ZFC — and so on for stronger axioms.

The antinomies (like Russell’s Paradox’) are often taken as showing that
Naive Comprehension

(NCy) Ay)(Ox)(xey = ¢(x))
(NCy) (OF)@y)(Ox)(xey = F(x))

is wrong. The assumption that every concept/property® has an extension,
which is a set, is considered rejected. The first order axiom schema (NC,) or

Historically this is misleading as Zermelo included the Axiom of Choice in his

system, where he used it to prove well-ordering (in 1908). He also has an extra axiom for
the empty set, &, but as in FOL the domain cannot be empty, one does not need this
axiom, but gets & by separation. In the 1920s Fraenkel and von Neumann and Skolem
added Replacement. Zermelo’s original system did not contain Foundation, but his
system of 1930 does. His 1930 system ZF’ leaves out the Axiom of Infinity as he then
considered it to be an extra-logical existence assumption. Zermelo’s formulation was not
confined to FOL, but Skolem’s clarification of ‘definite’ property as used in an instance
of Separation led to first order ZFC. Cantor already stated and used both the Axiom of
Choice and Replacement.

7 <Antinomy’ will be used for a contradiction provable given some theory and its logic.
A ‘paradox’ is just a theorem contrary to our expectations and prejudices. Already
Zermelo stressed the importance of this distinction, as otherwise one sees the likes of too
many antinomies where there are only paradoxes. Unfortunately usage is not so clear
nowadays. By the way: The antinomy unfortunately called ‘Russell’s Paradox’ was
discovered some years earlier by Zermelo. It leads back — as many antinomies — to
negative self-application of a property/predicate, the idea behind the canonical proof of
Cantor’s Theorem, which served as the context of discovering ‘Russell’s Paradox’.

8 In the context of this essay I take “concept” and “property” to be synonymous within
set theories, as is usually done. In (natural language) semantics concepts may be said to



the second order axiom (NC;) are sometimes called ‘naive set theory’. They
were by no means present in all approaches to set theory introduced in the
19" century. Cantor’s original set theory was concerned with combinatorial
multiplicities. At times, though, he considered sets as ‘united by a rule’,
which sounds like Comprehension. Comprehension was certainly present in
the logicist approach to set theory of Frege and Russell.

Now, take a version of Comprehension: the Russell Set, defined as R = {x |
x¢Xx}, and taking ‘x¢x’ as the open formula @(x) or the property F yields the
famous antinomy: ReR 0 R¢R. The defining property of NOT BEING A SELF-
MEMBER seems to violate the constitutive assumption behind Naive
Comprehension by not having an extension, on pains of inconsistency.

There is another reading of Russell’s Paradox, however. Proceeding to
Zermelo’s Aussonderungsaxiom (Axiom of Separation)’ or not-naive
Comprehension scheme (of set theory Z.)

(AS) (Ox)Fy)([@w)(wey = wex 0 ¢(x))
the property NOT BEING A SELF-MEMBER can be used to derive:
(NU) 0(Ex)(@y)(yex)

the denial of a universal set.'® What Russell’s Paradox shows on this reading

is that the assumption of the existence of a universal set is illicit. Cantor’s
Theorem establishes that the powerset ¢ (x) of a set x has a larger cardinality
than x. Cantor’s classical proof refutes the supposition of a bijection f

refer to properties, which are often not taken as sets. Set theoretic ontology is less fine
grained. A distinction is made between formulas expressing a concept/property and the
concept/property. CAPITALIZATION is used to signal a concept/property. Reflecting on set
theory and its relation to our cognition concepts (like the concept SET) are taken in their
usual sense as cognitive, and whether they are captured and explicated by a theory (say,
of ‘sets’) is the matter of debate.

®  To be precise: It is a schema in the wff ¢. Any set can be separated by this axiom
schema which corresponds to a wff in the language of the theory. The constructible
universe L (used in Godel’s relative consistency proof for the Axiom of Choice and the
Continuum Hypothesis) consists only of such sets, which requires restricting the powerset
operation to constructible subsets.

10 Proof' (Outline). Assume U exists. Take U as the base set x in (AS). The first conjunct
on the right side of the biconditional can then be eliminated, being logically true. One
arrives at the form of (NC;) and the usual reasoning to the Russell Paradox goes through.
Reject the existence assumption concerning U by arriving at the contradiction. B This
proof can already be carried out in a weak subsystem of Z, like Kripke-Platek set theory
KP. Membership can hardly be indeterminate for a set theoretic realist. Even if this had
some plausibility for some sets, with respect to U something is in the universe or is not.
Avoiding the Russell Paradox by banning R from U leaves us with the mystery where to
put R then, or with the option that some collections cannot be sets, which leads to a
set/non-sets distinction, we will look at in chapter II. Indeterminate membership plays no
role here; theories without tertium non datur will be considered in chapter V, but giving
up fertium non datur may mean rejecting both ReR and R¢R.
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between x and (x) by considering the subset {x| x¢f(x)}. If x is the
universal set this naturally introduces the Russell Set (being an element and
a subset of the universal set). The idea of a universal set thus stands in tension
to a core ingredient of the concept SET: that every set has subsets, which
should be collectible. “c” is as central to set theory as “€”: one of them
provides a sufficient foundation:

(Dcl) xCcy€(Vz)(zex D z€y)
(Del) XE€y £ {x} Cy

The Powerset Axiom focussing on “c”, therefore, deserves a special role in
any set theory, as Comprehension and/or Separation focus on “&€”. That
U&U may seem less unnatural than o (U)cU and o (U)€U.!"

Comprehension is fine as long as we restrict the domain of objects to be
comprehended. If we assume that there is no universal set or domain even
Naive Comprehension need not lead to the antinomies, as one cannot take
for granted that R (or a similar cause of trouble) belongs to the objects (sets)
to be comprehended. (AS) provides the safe formalization of this idea. The
property NOT BEING A SELF-MEMBER can be taken as having an extension now
that (AS) has been adopted. Any property has an extension relative to a base
set. And if a is the base set for an instance of (AS) with ‘x¢x’, the extension
of the subset corresponding to NOT BEING A SELF-MEMBER relative to a is a
itself (as by the Foundation Axiom no set is a member of itself, so that all
members of a satisfy the condition x ¢x).

The discovery behind the set theoretical antinomies then consists not in a
claim about properties

(NNC) Not every property has an extension.
but in a claim about universality
(NU”) There 1s no universal set.

Both claims are ontologically substantial and surprising. Hilbert, for
instance, thought that conception formation was in trouble, as the idea that
being able to determine whether something falls under a concept does not
suffice for the concept’s existence.

The argument against U works with Separation. Using (NC) leads to the
antinomy. One reading of the antinomic argument can also be that it uses the

1" Even the problem with Frege’s ‘basic law’ (V) goes back to this, since Frege at the

same time defines extensions as objects (i.e. first order entities) and puts them in basic
law (V) in correspondence to courses of values (predication) of concepts (i.e. second order
entities), by Cantor’s Theorem there have to be more extensions of concepts (namely sets
of objects) than objects (cf. Boolos 1998, pp.135-54). Because of the complete absence
of a Powerset Axiom we do not consider set theories like KP (Kripke/Platek set theory)
in detail.
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assumption that the Russell Set R is part of ‘all’ objects (i.e. within the range
of “V”). The range of “V” on pains of contradiction thus cannot be
universal, R lying outside of it. Thus there is no unrestricted quantification
over all collections. If “V” ranges over all sets, R cannot be a set after all.
The collection of non self-membered sets turns out o be the range of “V” in
Z. because of the Axiom of Foundation (i.e. turns out to be the iterative
hierarchy V itself)! In this reading of the antinomic argument again a set of
all sets 1s excluded. The reasoning poses two problems we come back to
again and again: (i) (NC) still allows building the forbidden collections U
and R, and (ii) the reasoning invites our naive bewilderment where some
collection is ‘to be’ when outside of the range of “V ™.

The naturalness of the idea of universality or a universal set may be related
to the Calculus of Classes (cf. e.g. Hilbert/Ackermann 1928, Chap. 2).!?
Textbooks unhesitatingly speak of a ‘universal class’ here. The Calculus of
Classes systematizes our reasoning with respect to ‘classes’ of arbitrary
objects by defining cuts, unions etc. The complement of such a ‘class’ a is
an absolute complement a, such that aua is the ‘universal class’. The crucial
point is that these ‘classes’ of the Calculus of Classes only contain
individuals of the considered domain. There are no ‘classes of classes’. The
‘universal class’ is just the domain considered. The ‘classes’ of the Calculus
of Classes are neither sets nor classes. They obey some axioms (like
Extensionality), but others (like Powerset) do not apply here. The concept
SET exhibits much more complexity than the concept COLLECTION OF
INDIVIDUALS!

Given the logical apparatus of Z we can even derive: U = {x | x =x} = ,
even though we have: (0x)(x = x)!"?

There are several reasons why there is no universal set in ZF:

1. There is no U because this contradicts Cantor’s Theorem (i.e. because of
the Axiom of Powerset). For U we should have ¢ (U) < U, but this
contradicts Cantor’s Theorem (as, trivially, a subset has at most the

12" In the following paragraph “class” is scare-quoted to make clear that these collections

are not proper classes, but collections of individuals.
13 Proof (Outline). If one allows for definition by abstraction in a pure set theory (i.e.
without atoms, which are not sets) one has to use a scheme like the following:

X} =y =((0x)(xey = ¢(x) 0 @wW)(W =y))V(y =D 0 0EFW)([Ox)(xeW = ¢(x)))

Now, for an instance of this scheme with U = {x | x = x}, assume U # (J, then the second
disjunct on the right hand side is false. Therefore the first disjunct has to be true. This
leads to contradiction again, by the proof for (NU). Thus the assumption has to be
rejected. [In a set theory with atoms the second conjunct in the first disjunct has to be the
meta-linguistic assumption that y is a set, cf. Suppes 1960, p.34.]
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cardinality of the superset). [By the way: Hilbert had a similar argument
working with self-mappings of functions of numbers.]

2. There is no U because this contradicts the Axiom of Foundation. For U
we should have U&€U against Foundation.

3. There is no U by the Axiom of Separation, as shown above.

4. As, because of further antinomies, there cannot be a set of all cardinal
numbers or of all ordinal numbers — as was already clear to Cantor — there
can be no U, which had to contain these sets as separable subsets.

5. There is no U by the Axiom of Pairing in combination with Foundation
as {U} could be built by Pairing (i.e. U and U again gives {U,U}={U}),
but {U} €U contradicts Foundation as {U} does not have an element that
does not share an element with it (as U€U).

The absence of a universal set yields more consequences in Z, ZF and ZFC.
In Z, ZF and ZFC absolute complements are missing: since subsets are
separated relative to a base set the complement to a set x is not the collection
of all things not in x, but only the collection of those things in the base set
which are not in x. This follows the spirit of Separation, but violates,
supposedly, our intuition as to complements. Just as Comprehension is
restricted in Z so i1s complement building. There cannot be absolute
complements as the absolute complement to & had to be U.

As ZF and ZFC are naturally understood by the iterative hierarchy [cf.
below] their definition of number cannot be Frege’s. Frege used a flat
universe and defined a cardinal number as the equivalence class of sets with
the same equinumerosity — or a representative of that equivalence class.'
Frege defined equinumerosity by means of bijective functions. This cannot
be done in ZF as, for instance, there are singletons of any rank in the
hierarchy, so the supposed set representing 1 had to contain elements from
any rank, but this is impossible for a set (contradicting the Reflection
Principle): Sets have a minimal rank, the rank at which all their elements are
present. A collection of sets of arbitrary high rank cannot be a set, and this
cannot be or represent a number.

The idea that there is no universal set seems to go against our logical
intuitions as we have developed them working with quantificational logics:
There is always a domain of all objects to be quantified over.

What then can be the semantics of Z? How are its quantifiers to be
understood? Although there is no universal set, there is wuniversal
quantification in Z.. The axioms witness this. The Axiom of Separation, for

4" In fact, in Frege’s consistent system behind the Grundlagen der Arithmetik the

concept BEING-IDENTICAL-TO-ONESELF should have an extension, and thus a number: the
number of a/l things! The system can, however, not tell us what number this is (cf. Boolos
1987).
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instance, says of all sets that for any condition the corresponding subset
exists. In terms of the iterative hierarchy [cf. below] the axiom talks about
sets of any rank.

One issue should be made clear at the very beginning: The metaphors usually
employed when setting out ‘the construction’ of some sets, say of the
transfinite ordinals, should not be taken literally as involving some temporal
procession of arriving at ever larger ordinals, ranks or cardinalities. As sets
are abstract entities they do not depend in their existence on any one — not
even God — counting up to them. Sets are simple there. All of them are there.
The metaphors of construction merely serve to express the structures the sets
employ, and may serve, sometimes, as didactic devices how we come to
understand some set on the basis of another collection of sets. Thus, that
there is no highest rank in ZFC should not be misunderstood as the set
theoretic hierarchy V being under construction. All sets are there, thus V is
there. For this ontological thesis and corresponding universal quantification
it is irrelevant whether we have epistemic means to distinguish that totality
from any incredibly large, but not total collection/set.

Like FOL, which does not count its domain to be one of the objects to be
quantified over, Z itself need not talk about its domain. A stronger meta-
language may be used to model the semantics of Z, typically a second order
logic (SOL) talking about proper classes, one of which may be the domain
of Z. We come back to this later.!> But suppose there to be such a model for
Z.. What should the domain of it be called? It certainly looks like a universal
set, as it comprises all sets. Then Z cannot be complete, since it does not deal
with all collections of objects/sets. But wasn’t it supposed to be complete in
its application? V has to be a collection of sets, and can be no set itself in Z.
Zermelo (cf. 1908) recognized this and concluded from the reasoning about
the Russell Set that the domain of set theory ‘is not itself a set’. There seem
to be totalities beyond sets then.

The standard picture of the realm of sets accompanying ZF and ZFC is, at
least nowadays, the iterative or cumulative hierarchy. It can be argued that
Cantor had already a conception of sets congenial to this picture, because

5 T use “set” to talk about sets and “class” to talk about proper classes (so called

because these classes either are not sets or have no corresponding set, both usages are
common, we come back to the idea of ‘correspondence’ below). “Set” and “class” are
thus not taken as synonymous here. All claims and theories referred to are adapted to this
usage; formalisms/symbols are also rendered into the common format used here.
Following ordinary usage equivalence sets are called “equivalence classes” although they
are no classes.
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Cantor thought of sets as build by the iterative application of set building
functions. Frege’s set theoretic universe, in contrast, has to be conceived as
flat (non hierarchic). The hierarchy was clearly developed by von Neumann
(1929), wherefore it is sometimes called “von Neumann hierarchy”. Zermelo
developed a similar picture in the late 1920s. The Axiom of Foundation and
the Axiom of Replacement determine this picture. Foundation expresses the
idea that a set occurs at some earliest level in the hierarchy (as sets are
build/defined by iteration of set building operations there is some — though
possibly transfinite — number of preceding set building operations). As
mentioned before, talk of ‘building’ sets should not be taken as a process of
construction, but only as an easy way to express structural dependencies
between sets all being already there. The Axiom of Replacement expresses
the continuation of ever higher levels (e.g. by collection a transfinite
sequence of iterations of applying the powerset operator into a single set).

In the pure version of the hierarchy the starting level (or ‘rank’) V is &, then
there are two ways of proceeding to higher ranks

Vaii = 9 (Va) for successor ordinals o
Vs=U{Vu| a <0} for limit ordinals 6

the set theoretic universe V can then be seen as a hierarchy where later sets
depend on preceding sets (although, of course, not in a temporal manner).
The hierarchy is iterative as the two hierarchy building operations are applied
over and over again. The hierarchy is cumulative as the sets present at V, are
also present at all levels Vs with a. < 8.!% Each set has some earliest rank of
occurrence. All ranks are transitive sets (i.e. contain all members of members
of members...). The strength of the operation of collecting the powerset
provides the plenty of the next stage. Reflections about how strong the idea
of a powerset is concern directly the issue of the Generalized Continuum
Hypothesis (GCH).

The picture is slightly different in a set theory with urelements. The set of
urelements M lays at the foundation of the hierarchy V, = M. The two ways
of proceeding are accompanied by the requirement that for each Vo, M C V.
A corresponding set theory needs to distinguish sets from non-sets and is
called ZFU or ZFCU."

16 Remember that @ < Vg for any Vo as Vg is a set. Thus at Vi & and {&} are
present and thus each stage contains all preceding stages.

17" Usually the system is called ZFU, with U being the set of urelements. The name
“ZFU” may thus confuse in the context of our investigation into the existence of the
universal set U. Nonetheless we stick with the usual name “ZFU” as urelements and thus
ZFU and ZFCU play no vital role in this book. For us it is important to distinguish the
set of all sets U from the class of all sets V, so we need the name “U” in addition to “V”.
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Thus one can picture V as either a pure hierarchy of ZF, ZFC (upper part in
the picture) or a hierarchy based in domain of non-sets (lower part).
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ZFU has a broader base than ZF. The dots before V., indicate that V,, is the
first limit level (of transfinitely many).

Z takes us with the Axiom of Inifinity to V., but not to arbitrary high ranks
in V. We need ZF (i.e. Replacement) to go further. By Replacement we
know that the function in n for n€® which takes as value the n-time powerset
of ® has as range a set, since o is a set (by the Axiom of Infinity). Therefore
(by the Axiom of Union) the union of all these powersets exists as a set, and
thus as a next rank in V. Now we can move in ZF beyond V.:e. Note also
that in this rank all other ZF-axioms are satisfied, while — by Foundation —
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the rank is not a member of itself, which establishes the independence of
Replacement from the other ZF-axioms. '

Up to V., we find in pure set theory the hereditarily finite sets. They fit
naturally to defining the ordinals in von Neumann’s way: n+1 £n U {n} and
take J as 0. Then in V,, a transitive set of transitive sets is a number. We get:
NEVan, NV, Vi€ Vo, Vac V. Ranks and numbers thus are €-ordered.
The hereditarily finite sets fulfil the axioms of ZFC save the Axiom of
Infinity, although the Axiom of Choice and the Axiom of Replacement
become unimportant here: The Axiom of Infinity is thus independent from
the other ZFC-axioms. The finite system is sometimes called: ZFC=. In fact
one could add an Axiom of Finiteness here:

~(@) (= A (Vy)(yex D yU{y}€x))

Obviously, the Axiom of Finiteness is true up to Vo, i.e. for all hereditarily
finite sets. And equally obviously V. (i.e. the domain of that theory) is not
finite. We meet the same situation as with Quine’s basic finite arithmetic [in
chapter III]. Even ZFC~ can do what Peano Arithmetic, PA, does: prove
theorems concerning representability and provability (e.g. Tarski’s and
Godel’s theorems.!” Note that the hereditarily finite sets provide an intended
model for ZFC (i.e. in contrast to other unintended countable models for
ZFC). Note also — and this may be thought to be important — that Naive
Comprehension causes no trouble within the hereditarily finite sets. The
Russell Set, for instance, does not exist up to Vo, as it contains all hereditarily
finite sets, since they satisfy Foundation, and thus is infinite. If the set of
urelements is finite as well — as one may expect in a finite physical universe
— this finite consistency of Naive Comprehension may be the background of
our intuitive support of Naive Comprehension. Let us note this as a theorem
“y”” not occurring in ¢ as always):

(y
(FNC) [{Xle(x)} < No D (Fy)VX)(xEY = (%))

18 Remember not to confuse the indices of ranks above Ve with theses about the

cardinality of the rank itself, the order type of its largest member or the index number
occurring for the first time at that rank. o+1 (i.e. {2,3,4,...1}), ®+2, ®+3 etc. are, because
they are order types (i.e. relational) subsets of @wxm, thus countable, thus sets of ordered
pairs (i.e. given the usual definition of ordered pairs, sets of sets of sets of natural
numbers) being subsets of Ve+2, members of Ve+3. These ranks have cardinality N2, N3
respectively and contain many, many ordinals. O under the usual construction (as a set of
sets of sets of natural numbers) is a subset of Ve+2, member of Ve+3. O is uncountable,
whether it has a order-type (not just a simple ordering, but a well-ordering) is not obvious
and is ensured only by ZFC, not ZF.

9 Cf. Fitting 2007. The Peano/Dedekind-Axioms for the successor function and
induction follow easily in Z from the Axiom of Infinity. Taking natural numbers as von
Neumann ordinals makes obvious that 0 is no successor and that the successor relation is
functional. Induction follows since an inductive property is inherited by the successor
relation, thus contains ®.
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Let us leave ZFC~ behind and look at all ranks in V. With a little pretense
we can say: In the iterative hierarchy exists at some rank any proper subset
of V, i.e. (a) pretending for the moment that the non-set V has subsets and
(b) speaking only about collections that can be sets (excluding a set of
ordinals etc.). We can approximate Naive Comprehension up to an arbitrary
rank: y = {x | ¢(x)} exists for any ¢ as long as the rank of y < a for some
ordinal a.. The set y exists then somewhere below o.. We can say in general:
If a set x exists x has some rank.? Existential statements are, if true, true in
parts of V. The Principle of Reflection correspondingly claims that if a
general sentence or a finite collection of sentences in the language of ZFC
is set theoretically true, there is a least rank V. which can serve as its model
(with variables in the sentences bounded to rank V.).?! One might expect
that as all specific sets mentioned in a sentence have a rank. Limit ranks
ensure this structure. Once again — as with Naive Comprehension — we seem
to approximate talk of all sets! The Reflection Principle is equivalent to the
Axiom of Replacement.?? So the fully developed picture of the iterative
hierarchy established by Replacement approximates universal set theoretic
talk. Unfortunately, this would be too good to be true.

On the one hand we approximate universal set theoretic talk. And not just —
one may claim (as Kreisel 1967 did) — set theoretic talk: Set theory can be
considered to be our strongest formal system, the system to be used in the
meta-theory of all other systems. Then: If some claim in some informal
system is intuitively valid and can be captured in some formal system it has
a set theoretical model. Kreisel’s Thesis so states: Whatever is valid 1s valid
in a set theoretical model, and if — as we may suppose — finitely many
sentences were used in that piece of reasoning, it is valid at some rank V.

20 Proof (Outline). If x existed without a minimal rank at which it exists, x would

contain all ordinals as a subset, which is impossible.

2 This does, of course, not hold for an infinite collection of sentences as all infinitely
many instances of the schema of Replacement enforce V. The Principle of Reflection is
another reason why ZFC cannot be finitely axiomatized: If ZFC could be finitely
axiomatized, then it would establish — by the Principle of Reflection — a model of itself,
thereby establishing its own consistency, contradicting Gddel’s Second Incompleteness
Theorem.

22 Proof (Outline). The Reflection Principle entails Replacement, since if the antecedent
of Replacement is true, there has to be a rank Vo modelling it; the set postulated as
existing in the consequent of Replacement will be a subset of that modelling rank Vo.
Replacement entails each instance of the Reflection Principle in going through the
quantifiers of the finitely long compound (Vx)¢(x) taking the lowest possible rank of
satisfying instances (which have to be there to make ¢(x) true) and uniting them and their
dependencies (by a Replacement function) into a highest most comprehensive rank,
which thus models (Vx)p(x). B Omitting the Replacement schema and restricting
separation to formula ¢ with quantifiers bounded to some set provides a further weakened
theory Z (also known as ‘MacLane Set Theory’), which nonetheless proves sufficient for
most of mathematics.

21



On the other hand, however, we, obviously, shift the domain of reference
from V to some rank V.. So a universal statement (say, the Axiom of Pairing)
does no longer talk of all sets, but only of those up to V.. Seen in this light
the Principle of Reflection resembles the Lowenheim/Skolem-Theorem in
allowing for non-standard or unintended models of universally quantified set
theoretic sentences. As V. can be arbitrary high one may see this as less
concerning than the countable models ensured by the Lowenheim/Skolem-
Theorem. If Vo is a sufficiently high transfinite rank we approximate
universal talk. We can also understand the possible shift of domain of
reference as underlining the insight that universal set theoretic talk is bound
to strong axioms like Replacement.

The universe V is not reached by any ladder (‘construction principle’) used
within it. It is as strongly inaccessible by such steps as it can be. Otherwise
we only have a temporary halting point V.. V is no number, is no set, no
union or power of sets. V can only be thought as sui generis. How do we
know this? Because otherwise it could be superseded in one of the usual
ways. We thus have a transcendental argument concerning V’s nature: it
cannot be otherwise, since otherwise it wouldn’t be.

Without the Axiom of Foundation or endorsing an Anti-Foundation Axiom
the realm of sets is larger containing with the unfounded sets more collection
like entities. Where are these collections collected in? U seems a good
candidate for an collection of unfounded collections as U€U itself. But
unfortunately, Z forbids U. Are unfounded collections sets? Or does our
concept SET entail that sets are grounded collections? In this case we had the
problem that on the one hand we had to endorse the Axiom of Foundation,
but this excludes U from our set theory. If sets are abstract entities nothing
seems to exclude that they contain themselves as all spatial images are
inappropriate. Picturing non-wellfounded sets by graphs (cf. Aczel 1988)
shows easily membership bending back to its origin. Anti-foundationalist set
theories contradict our concept of set, however, if set identity becomes more
than identity of membership (cf. Aczel 1988, chap.4). The iterative hierarchy
motivates our picture of sets as well-founded by stressing the idea of
ontological structural dependence between a set and its members. In this light
a set containing only itself, x ={x}, seems unnatural. U, in contrast, contains
besides all other things itself. We might recognize U as a set sui generis and
allow for U what we do not allow for other sets. Foundation would make an
exception for U. But the exceptions would not end here as U, being subject
to the others axioms if still a set, is exceptional — even inconsistent — with
respect to Cantor’s Theorem, for instance. Foundation certainly is built in
the iterative hierarchy and V does not pose the problems with respect to
Foundation that U does. According to the story of the iterative hierarchy,
unfounded sets do not exist. The Axiom of Foundation follows from the set
up of the cumulative hierarchy. The two conditions to proceed to higher
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ranks ensure the axioms of Pairing, Sums, Powerset and Infinity. Coupled
with the idea of sets being extensional the structural properties of the iterative
hierarchy thus entail the ZF axioms (cf. also Boolos 1989).

There are — besides the question of an Anti-Foundation Axiom -
incompatible set theoretic axioms (like the Axiom of Choice vs. the Axiom
of Determinacy®®), which shows that there are related realms of set-like
entities (sharing the basic axioms), but which cannot be consistently united.
There might be a unified inconsistent realm of all these sets [cf. Chap. V].
Even the incompatibility need not show that our concept of set is not settled.
One of the set theories may be thought to be more natural. Even a concept
SET settled in its basic aspects (like set separation and powerset existence)
may leave some questions unsettled. The (Generalized) Continuum
Hypothesis is the best known example. The simple Continuum Hypothesis
[—(Fx)(No < x| < 2%°)] is even independent of the Axiom of Choice.?*

V has sets of arbitrary high rank. V itself does not occur in the hierarchy
itself. V taken as the proper class of all ranks in V is a model of ZF. If V
exists ZF is consistent, as V satisfies all its axioms. Large cardinals (strongly
inaccessible cardinals beyond the reach of any set building operation by
being uncountable, regular and greater than 2° for any preceding cardinal §),
if existing, are such models as well. For V the axioms of ZF are construction
principles and thus trivially satisfied. For (strongly) inaccessible cardinals
the important observation is that they are assumed to be just larger transitive

23 Cf. Jech 2003, pp.627-43. The Axiom of Determinacy in so-called ‘Descriptive Set
Theory’ contradicts the Axiom of Choice, what one may take to be bad enough. It also
entails some strange results for large cardinalities (like X1, N2 being measurable
cardinals, but X3 ... not being measurable). ZFC seems closer to our conception of sets
in this regard.

24 Proof (Outline). Alephs are defined as infinite well-orderable cardinals. The Axiom
of Choice is equivalent to the statement that any infinite cardinal is an aleph (as it implies
the Well-Order Principle). Negating the Axiom of Choice (and thus the Well-Order
Principle) one may endorse the simple Continuum Hypothesis buf maintain 2%° = N,
since one may now deny that the Continuum can be well-ordered, whereas the
combination with the Axiom of Choice entails 28° = X, since the Axiom of Choice
entails that any infinite initial ordinal is an aleph. B

Cantor proved in 1883 that there is no cardinality between the cardinality of the collection
of finite ordinals (¥X¢) and the cardinality of the collection of all countable well-orderings
of o, that cardinality thus being the next well-orderable cardinality: Ni. Given the
Continuum Hypothesis 28° is the cardinality of all countable /inear orderings of ®. Given
the Well-Order Principle thus N;=2%°,

The Generalized Continuum Hypothesis (GCH) entails the Axiom of Choice: Using the
first aleph GCH claims for all infinite cardinals x = 2Y™°, x = 2Y"X° entails x being an
aleph, which makes y an aleph. The GCH thus excludes that there are cardinals in between
well-orderable cardinals (i.e. in between well-orderable sets), so that via its respective
cardinal number any set can be well-ordered. B (On arguments and intuitions around CH
and GCH cf. Potter 2004, pp.266-82; Maddy 1988, §2.)
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sets. Take the least such cardinal; any function within it is of lower rank as
the cardinal itself; thus the range of the function is a set, which has this least
inaccessible cardinal satisfy the Axiom of Replacement — the other axioms
are obviously satisfied again (cf. Jech 2003, pp.165-67).

Having all subsets of a rank present at the next rank suits the Axiom of
Choice: If a family of non empty sets x exists at some rank V., the members
y of that family exist already at lower ranks Vs with d<a, and their members
z exist already at lower ranks V,with y<d (relative to a 8 for some y); thus as
these z are elements of some V, a sef w containing one of them for each yex
exists (at the latest) at the rank V. of x. Choice is natural in the iterative
hierarchy. V rather corresponds to ZFC.

Once we have one of the inaccessible cardinals or the class V of all sets we
have a model of ZF and could be content with respect to our theory of sets.
So should we care about their nature?

Leaving V to the side for a moment let us consider large cardinals. We have
just talked about them, so we know something about their nature and we can
ascribe properties to them. So they should be the objects of some theory.

Zermelo thought of strongly inaccessible cardinals (his ‘Grenzzahlen’)
forming themselves an unbounded sequence. This, however, implies that we
quantify over them, and are again in the situation of asking over what domain
now our quantifiers run. Is this collection of Grenzzahlen itself some
Grenzzahl? Supposedly not to avoid antinomies of the Burali-Forti-type.
Then again if we now introduce Super-Grenzzahlen we can start all over
again with them — and once more the whole process iterates. Zermelo
thought: ‘This series reaches no true completion in its unrestricted advance,
but possesses only relative stopping-points, ...” (1930, p. 47).

Now, this way of thinking may be innocent for a constructivist, but for a set
theoretic realist the idea that sets have to come into existence is simply
wrong. Placing them at some rank in the hierarchy does not mean that they
come later (in time?) than the other sets. Frege’s universe is anti-
foundational. And for a Platonist an anti-foundationalist universe has the
advantage of keeping all ideas of stepwise construction at bay. As all abstract
objects are there they exhibit some ontological dependencies, but this does
not require that some are before or beneath others. Impredicativity is no
problem in such an anti-foundational universe. Zermelo himself rejects any
spatiotemporal associations. A well-ordering ‘has nothing at all to do with
spatiotemporal arrangement’. He also thought the term ‘“choice” to be
problematic as one may associate (temporally) successive choices being
performed, where we have only a representational/selectional correlation (cf.
Ebbinghaus 2007, p.69, 135). The ranks express a structural dependency
only. All ranks are there. In the same way all of that coming beyond the set
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theoretic ranks (i.e. any large cardinal) is there. Thus there should be a
collection of it all. Assuming a sequence of large cardinals thus does not
seem to solve the problem of collecting sets, but either adds the issue of an
incomplete universe [cf. Chap. VI] or means that V contains them all and
only our sef theory, say ZFC, is not complete yet and has to be strengthened
by further axioms.

The issue of large cardinals is independent from that of the universe of sets.
If one can argue that some idea of some type or large cardinals comes from
our concept of sets — say, why should &, be the last inaccessible? — then
these large cardinals may be thought of as stages in V above those which
ZFC (so far) treats of. Any type of closure operation on preceding collections
should correspond to a set within V. This idea resembles the content of the
Reflection Principle: Any finitely specified closure condition can be
modelled by some rank. Large cardinals may provide a universe and a model
for ZFC, but they differ from classes in being collectable themselves and
thus being members of the overall universe of (extended) set theory. Another
argument for such additional sets stems from Scott’s proof that VL given
large cardinals, as the notions of (unrestricted) powerset and uncountability
stand in conflict to V=L. The constructible universe seems unnatural, even
though V=L entails the Axiom of Choice and the Generalized Continuum
Hypothesis, excluding it speaks in favour of large cardinals. The
constructible universe violates the idea of purely extensional sets inasmuch
as pure extensionality should allow for sets beyond any descriptive powers.
One might think that it follows the idea of Naive Comprehension, that sets
correspond to properties, but why should all objective properties correspond
to formulas in the first place? Proceeding to the next rank by the full powerset
operation suits the simple idea of the powerset. Curtailing the powerset to
subsets which are definable leaves out sets that should be there.

V is the ultimate model of the universe also in the sense that constructions
like ‘forcing’ or means of building ‘inner models’ start from V (cf. Arrigoni
2007; on the formal details cf. Jech 2003, pp.175-223).%°

The iterative hierarchy does not know several classes. It might be preferable
not to call V a class, but to treat of V as a very special object in its own right
— an issue of axiomatic ontology. If we call V a class it is not to be thought
of in the manner of NBG or MK, since there is no part of set theory which
addresses it, like Comprehension and Limitation of Size address classes in
NBG or MK [cf. chap. II below]. V is not in the range of set theoretical
quantifiers. It is not in the domain. Calling V ‘a class’ in the context of the

25 Leaving here to the side the problem that such models are non-standard or

unintended, e.g. in being countable; cf. the remarks in the next chapter on limits of
expressivity. One may add that inner models like L, which restrict the powerset operation,
but satisfy the others axioms in their standard reading (relative to the shrunken universe),
are less non-standard than models generated by forcing.
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iterative hierarchy and ZFC means there exists only one class (outside of our
theory of sets).?®

V is the range of the quantifiers in ZFC. Cantor claimed that every potential
infinite presupposes an actual infinite ‘and cannot be thought without it (cf.
Cantor 1887). This is the Domain Principle: Speaking of and quantifying the
x presupposes the domain of the x.?’

V is a very special entity, both within the picture of the iterative hierarchy as
in our meta-theory modelling our theory of sets. V has no subsets as V is no
set. V is not well-ordered — even in the presence of the Well-Order Principle
only sets are well-ordered. V is not the domain of a (replacement) function,
sets are — and so on. V contains all ordinals and all cardinals, but there is
neither a set of all ordinals nor a set of all cardinals. They cannot be
established as subsets of V, since V is no set (and thus Separation does not

apply to it).

For V to be more than a stopping point to be superseded V has to be an entity
sui generis. This means informally that V is exactly what the picture of the
iterative hierarchy shows it to be. V is determined, not indefinite, and unique.
Formally this means

e that V cannot be an element of whatsoever other collection — on pains
of re-introducing distinctions of the set/class-type

e that there are no other entities of V’s type (not a collection of proper
classes)

e that V is an entity which can be talked about by its name, without
including it into a domain of reference.

V is not a standard object of (set theoretic) model theory. The only thing V
‘does’ is containing all the sets. A universally quantified sentence of pure set
theory is meaningful as there is an entity which provides all the variable
values: V.

26 At some time Cantor considered distinguishing several ‘absolutely’ large,

‘inconsistent’ collections (like those of all ordinals or all cardinals). But they play no role
in a transfinite set theory based on standard logic. Even apart from producing antinomies,
these collections play no indispensable role in proofs about sets. So Cantor came to
consider the single absolute, inconsistent totality beyond any further increase.

27 Cf. Moore 1990, pp. 114-22; Tiles 1989, pp. 95-107. The principle sometimes —
ignoring Cantor? — is discussed as ‘All-in-one Principle’, going back to (Cartwright
1994).
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A unified language has to distinguish urelements, sets and V. Again: V
cannot be unified with them in a domain. The name “V” refers to V rigidly.
End of story.
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II

LIMITATIONS OF SIZE

The idea of classes already mentioned we may take the universe of Z (and
other related set theories like ZF, ZFC) to be a class. We have to have formal
resources then to distinguish classes from sets. Let us use “V” to denote the
class of all sets (by what ever condition it may be identified, i.e. whether by
“x =x”, for sets x, or something else). V is universal for sets.

As “U” was used above to denote a universal set, V # U as long as classes
and sets are kept apart.

Von Neumann (1925) introduced a new axiomatization of set theory —
originally working with functions instead of collections — distinguishing
proper classes from sets.”® Von Neumann explicitly states the axiomatic
approach now obligatory in set theory:

To replace this [naive notion of set] the axiomatic method is employed; that
1s, one formulates a number of postulates in which, to be sure, the word “set”
occurs, but without any meaning. Here (in the spirit of the axiomatic method)
one understands by “set” nothing but an object of which one wants to know
no more than what follows about it from the postulates.

In NBG classes are distinguished from sets by the Limitation of Size Axiom.
It says:

(LSA) A class is not a set if and only if
there is a bijection between it and the universal class V.

The ‘universal class V’ is, again, universal for sets only. Thus there is only
one size for classes. Some collections are too big to count as sets, therefore
the name of the axiom. All other improper classes may be either taken as
being sets themselves or having a corresponding or representing set (cf.
Bernays 1968, p.63), which has the same elements as the improper class.?

28 The present form of the theory resulted from further development and employment

by Bernays (1937, cf. 1968) and Gddel (1940) and therefore is called “NBG”.

22 As T use “class” for proper classes in distinction to sets, I use “improper class” here
for collections X that are bound by class variables in NBG, but have a ‘representing’ set
x such that (Vy)(yex = yeX).



Limitation of Size entails the Axiom of Choice: because there cannot be a
set of ordinals, the collection of ordinals has to be as large as V, which,
therefore, can be well-ordered. Limitation of Size in itself does not exclude
a multitude of proper classes. It excludes a multitude of cardinalities beyond
VI

Limitation of Size by assuming V to be a class works with the idea ‘one size
fits all (classes)’. All classes have the same size. Even if we grasp the idea
that some size is too large to be collected into a set, why should we stop the
idea of oversized collections to continue? Why shouldn’t there be some
operations or some structure with respect to classes that provide super-
classes? And if there is some intuitive/conceptual appeal to the idea of
Limitation of Size, why not stop earlier? Why assume Vi Or even Vo, as
sets in the first place?

Limitations of size are unspecific or open as to which size might be taken as
limit. Randall Holmes ‘Pocket Set Theory’ (PST) uses N as limit (i.e. the
universe has cardinality X, and all infinite sets within that universe have
cardinality No). So PST has the Continuum Hypothesis built in. PST (cf.
Holmes 2006, §9.1) has the axioms: Extensionality, (SC*) of MK, Existence
of & and Singleton {x} for a set x, (unordered) Pairs, Existence of Relations
(i.e. ordered pairs); the Axiom of Proper Classes, that all proper classes have
the same size, is the PST version of Limitation of Size; the Axiom of Infinity
not just degrees an infinite set, but demands all infinite sets to be of the same
size, NXo. The Powerset Axiom is, of course, missing: the powerset of an
infinite set is a proper class (of cardinality N), no further power can be
generated. The Russell Class is a proper class in PST as well. And as the
ordinals are a proper class the universe of PST can be well-ordered (i.e.
Choice and Replacement follow as theorems from the mentioned axioms,
just as in NBG and MK).

What PST lets us see by all this is that any stopping point in limitations of
size 1s arbitrary. PST suffices for a lot of mathematics, and even moving
upwards a few alephs still has us positing some arbitrary limit, as long as the
limit is assumed to be of the kind we know from NBG, establishing an
uncollectible collection of equinumerous collections of a new kind.

Limitation of Size, thus, seems unnatural. Let us come back to the issue of
Comprehension. The formal language of NBG and MK uses typically (at
least) two sorts of variables and constants: one type for sets, the other type
for classes (and may be other types for atoms...). NBG might be seen as
further evidence for the thesis that the problem behind the antinomies rests
not in Comprehension but in universality. Bernays (1937) and Gddel (1940)
derive within (their syntactic versions of) NBG a Comprehension Principle
(as a schema in @) for sets:

(SC) If ¢ does not contain bound class variables,
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AY)(Ox)(x € Y = 0(x))

This principle of Set Comprehension (SC) collects sets (lower case
variables) in a proper or improper class (upper case variable) corresponding
to a defining property . “x=x" gives us V, “x#" J etc. The improper classes
will have a representing set then. Further on, NBG is a conservative
extension of ZF; in the language of ZF the two systems have the same
theorems. As NBG is a stronger theory than ZFC one can use it to describe
a model of ZFC. In a sense we understand what ZFC says and see the
consistency of ZFC in such a model (given, of course, that NBG itself is
consistent). As V provides a model of ZFC, showing it to be consistent, an
extension to Vi taking V, say, as the first strongly inaccessible cardinal Vi
and Vi = (Vi) shows NBG to be consistent! The difference @ (V«)\V«
then contains all proper classes. And there are then many, many more proper
classes than sets. If classes are understood as collected by formulas, there
cannot be more classes than formulas, there being thus less classes than sets.
One then has to forsake collecting subclasses, which should exist, since there
elements exist, into a collection — etc. As classes are supposedly larger than
sets the whole conception of tying classes to formulas seems to add new
peculiarities to the old ones.

NBG thus contains Comprehension as well as universality. Of course NBG
contains only universality for sets. Universality comes at the prize of
accepting a new ontological category: (proper) classes. Classes themselves
are understood inasmuch as one can give the axioms of a theory as class
axioms and then provide corresponding principles for sets. The main
drawback, however, is the well known shifting or elevation of the problem
of universality to classes. We have a class of all sets, but, of course (i.e. on
pains on versions of the set theoretic antinomies), we have no class of all
classes. (Often we have not a single class of classes as classes are taken only
as containers and never as elements.) This is as disturbing as the original
problem with U, one might think. Certainly classes should obey: (OX)(X =
X). Therefore there should be a collection of them — what are the class
quantifications running over, anyway?

If quantification is throughout being treated extensionally, then to admit
quantification over classes is to presume that the classes of sets form a
determinate totality which ought itself to be admitted as a class, a class to
which all classes of sets belong. (Tiles 1989, p.130)

Morse/Kelly-Set Theory (MK) differs from NBG in having a unrestricted
Comprehension Schema (with a class variable X)
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(SC*) @AX)N(Vy)yEX=09(y)

where in ¢ one may have bound class variables as well as set variables. The
schema is thus — in distinction to NBG — impredicative. MK and NBG share
Limitation of Size. NBG does not extend ZFC in the language of sets, MK
does. The extensions of ZFC brought about by MK can, however, also be
proven in ZFC+(some large cardinals). Proper classes are not needed to
deliver new theorems about sets.

In fact, as there are finitely specific operations to built sets from sets (like
complements, products, cuts...) NBG can be finitely axiomatized (by
substituting more specific set building axioms for the schematic (SC), which
can then shown to be valid) whereas neither MK nor ZFC can be finitely
axiomatized, because of the schematic character of (SC*) and Separation and
Replacement (cf. Cohen 1966, pp.73-78; Montague 1961).3°

Both NBG and MK endorse the important existence claims:
([eh (AX)X={<xy> | x€y}

(=D (AX)X={<xy> [x =y}
There is a class representing the membership relation (between sets). This
suits the idea of having membership (represented by “&”) as the basic
relation in set theory. The absence of these collections seems as unnatural as
the absence of U. The collection [=] can stand in for U — as U does not exist
in NBG or MK, since a set cannot be that large.

Both theories are two-sorted first order theories having, for instance, non-
intended countable models.

In their intended interpretation some see in them a solution to our quest for
U — and/or [ €]. The major problem with this view is their unaccounted use
of the multitude of classes, which are quantified. The realm under
consideration needs to include both representable classes (and their
corresponding sets) as well as the proper classes. What is it? V — as
understood by NBG and MK — is just a member of this domain!

One may even have classes within classes, as long as Comprehension (SC)
only applies to sets. In Ackermann set theory (cf. Ackermann 1956) classes,
therefore, cannot be distinguished from sets by being non-members. Each
class, for instance, has its singleton.

The notion of set cannot be defined in this theory. Ackermann uses a
comprehension principle restricted to sets:

(ASC) (Vx)(p(x)2Set(x)) 2(Fy)(Vx)(xEy = 9(x))
As “Set(x)” 1s a formula we have:

39 Of course ‘finitely axiomatized’ always means ‘consistently axiomatized’: any

system using FOL can be inconsistently finitely axiomatized by the axiom: L.
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(1) (Vx)(Set(x)DSet(x)) D(Iy)(Vx)(XEy = Set(x))

So we have some collection (i.e. a proper class here)’! containing all sets,
although the notion of set cannot be defined! Ackermann’s set theory with
respect to the well-founded sets turns out to be equivalent to ZF. It differs
from NBG in having not all of NBG’s proper classes (e.g. no proper class of
ordinals, cf. Holmes 2006, §5; Lake 1973).

If one allows for proper classes, but then proceeds (indefinitely) beyond
classes, as classes should be collectible themselves (e.g. Blau 2004), one
should never have made a set/class-distinction in the first place. A stopping

point in the progression of collections can only be a unique entity of a
different kind.

We come back to the class/set-distinction in chapter VI. Whatever virtues
and beauties NBG and MK provide they do not solve our problem of
universality.

The picture and the criticism do not change much, when we turn to Second
Order Logic (SOL). Zermelo himself always aimed at a categorical
characterization of sets. In both his systems he used SOL, claiming this to
be more natural than a first order version of ZFC and in awareness of the
downward Lowenheim/Skolem-Theorem. FOL 1is sound and (strongly)
deduction complete, but SOL allows for categorical models.>?> As all
properties of infinite sets are structural this (identity up to isomorphism) is
perfectly fine. The second order version of ZFC is ZFC2. Since ZFC2 is
categorical an ZFC open question like the Continuum Hypothesis is settled
by the ZFC2 models — if it has any, of course.

ZFC2 can express the concepts of finitude and infinity:

(INF) 3NV y)(f(x) = f(y) 2 x=y) A (VX)(X(x) D X(f(x))) A
(ANX ) A (VX)X(x) D f(x) #y))

31" In Ackermann Set Theory there are non-sets. Proof (Outline). Argue indirectly

starting with one of the antinomies, say the condition “x¢#x” and assume “Set(y)” for the
collection y of sets x¢x, arrive at: —Set(y).

32 Note that the soundness of FOL does not automatically carry over to first order ZFC,
as FOL is proven sound with respect to set theoretical models/domains. For parts of V
there are — by the Reflection Principle — models for the restricted axioms (namely some
higher ranks). V itself cannot be taken as a domain in the fashion of FOL soundness
proofs.
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is open in “X” (resembling the Axiom of Infinity with “f” denoting the
successor function). The negation of this sentence expresses finitude (FIN).

Models of these two sentences (INF) and (FIN) have to be infinite,
respectively finite; there are no non-standard models or versions of the
Lowenheim/Skolem-Theorem.

The Continuum Hypothesis then becomes:
(CHz) (VX)INF(X) A X< 0(Ro) D |X]|=No V [X]= 0(X0))

This is either frue or false in the ZFC2 models. It does not follow from the
other axioms though.

ZFC2 is the system consisting of:

¢ SOL (extending FOL by rules for introducing and eliminating second
order quantifiers); identity is not a logical constant “=", but defined, x

=y 2 (VX)(X(x) = X(y))-
e The ZFC axioms: Extensionality, Foundation, Pairing, Sums,
Powerset and Infinity.

e The Axiom of Replacement: (V f)(Vx)(dy)(Vz)(z€Ey = (Iw)(weEX
A z= f(W)))

e The Axiom (Schema) of Comprehension: (IX)(Vy)(X(y) = ¢(y))
[where “X” is not free in @]

e The Axiom of Choice: (VX)(Vy)(d2)X(y,z) D () (X(y,f(¥)))

Replacement says that the restriction of any function to a set gives a set as
range. Replacement — as always — allows deriving Separation, the Axiom of
Comprehension 1is, of course, much stronger. Replacement is no longer a
schema, Comprehension is. This system ZFC2 is equivalent to MK |[cf.
(SC*) above]! It has to be strengthened piecemeal to attain a more inclusive
character (e.g. by adopting CH,) although it will never be deduction
complete.

Full blooded SOL is more than two-sorted FOL (with one sort of variables
for individuals/sets and one for collection of them). In a pure set theory
ZFC2 takes sets as individuals and all collections of them as values of the
second order variables (cf. Shapiro 1991). Otherwise, as with FOL, the
Léwenheim/Skolem-Theorem applies and there are countable models. ZFC2
if not just a many sorted first order language quantifies over the properties
used in first order ZFC. ZFC2 is thus a property theory. Comprehension
says there is a property corresponding to any (first order) open formula in
the language, only by an extensional perspective can these quantifiers be read
as referring to classes. The second order variables thus are in this extensional
perspective not ambiguous: “X(y)” can be read as y having either the
property or belonging to the class X. One could also distinguish within the
first order variables between urelements and sets. Some of the collections of
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sets are sets themselves. As in NBG one might single our those sets
collections which correspond to a (representing) set (like in NBG classes can
— but need not — correspond to representing sets). The domain of the first
order variables in ZFC2 has to be the collection of all sets, the second order
variables ranging over subsets of this domain. If one models ZFC2 with a
typical meta-theory this meta-theory may be a set theory of the kind ZFC+
(e.g. with some axioms postulating large cardinals). In case the domain of
individuals is taken as the first (strongly) inaccessible cardinal 6 the second
order variables range over the powerset of 9, as even inaccessible cardinals
are introduced as sets, although larger ones.

There is another interpretation of ZFC?2 though. One may take V as the range
of first order variables (or at least those of the set type). One may take subsets
of V as the range of second order variables. As V must not be taken as a set,
there is no need to submit it to the Powerset Axiom. Of course the meta-
theory in this case will not be modelled in a set theory of any strength, but if
V is an entity sui generis one may expect so. Set theory is the strongest
formal system, since we use it or could use it to model other formal systems.
Therefore, we may allow it to be special in describing its way of reference
and variable binding [cf. Chap. VI for further discussion].

Plural quantification (as popularized by Boolos 1984, 1985) avoids
introducing a collection of classes. It thus fares better in adding no new
riddles than MK-style theories. Plural quantification, however, risk falling
back to the strength of a two-sorted FOL. More importantly, the issue of V
cannot be dissolved this way. Even if the uppercase variables (formerly
known as ‘class variables’) bind individuals together as group without at the
same time building a new collection — quite a feat, one might think — the
individuals still come from a presupposed domain: The plural quantifiers
share the feature of first order quantifiers of picking out objects out of that
domain. The domain issue does not go away by just presupposing the domain
or reverting to a stronger meta-theory again.

Turning to SOL so does not solve in itself our problem of universality and
an unaccounted set/class-distinction. SOL and ZFC2 (e.g. as used by
Shapiro 1991) are even worse than NBG or MK, because identity is defined
only for individuals (i.e. sets), as is clear from the definition: x = y £
(VX)(X(x)=X(y)). So classes cannot be identified. The background theory
assumes an extensional understanding of the second order variables
(equating predication, X(y), with membership, yEX), but extensionality is
not expressed within the language. Classes are thus a sort of collections
different from sets not only in size (as in NBG and MK) but also in character.
One can add extensionality by the axiom:

(EXT>) (VXY)X=Y = (Vx)(X(x) = Y(X)))
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Before we, thus, leave ZFC2 behind we have to consider shortly two
arguments that we have no other choice in set theory than turning to a higher
order logic.

It is sometimes said that to accept a schema presupposes endorsing its
universal closure (supposedly in a stronger meta-theory). Even if that was
true — which is not obvious as Hilbert’s use of indefinite expressions may
show — it would not commit us to SOL in case of ZFC. The quantification
can concern formulas in the language of ZFC. Transforming ZFC into a
many-sorted system looks like substituting a second order system (by
employing a second group of quantifiers) for ZFC, but without full blown
second order semantics we stay with ZFC; as there are countable many
formulas there is — in light of the ‘schema’-argument — no need to revert to
full blown second order semantics. We reach a sort of Henkin-semantics for
a many-sorted version of ZFC (i.e. with respect to the second order
variables).

The argument in favour of higher order and second order logic is, further on,
often put in terms of expressive power.

Many concepts are said to be inexpressible in FOL, for instance: FINITUDE,
WELL-ORDER, UNCOUNTABILITY. There are formula which seem to express
these concepts, for instance

|X| <Ny and |X| >N

express that the cardinality of x is less than N, (i.e. x is finite), respectively
at least N (i.e. x is uncountable). Both are available in first order ZFC. The
claim that they do not express what they seem to express appeals to the
Lowenheim/Skolem-Theorem that any first order theory has models which
are countable and models or arbitrary infinite size. As the two expressions —
and in fact any theorem and axiom of ZFC — can be made true in such
models, they do not enforce that the structure corresponding to ZFC has the
properties the formulas of ZFC talk about. In this sense concepts like
FINITUDE and UNCOUNTABILITY are inexpressible in ZFC. As SOL is
categorical in its models, any property it expresses some structure as
possessing is enforced on the models. See the two sentences (INF) and (FIN)
above. SOL in this sense is able to express, for instance, FINITUDE and
UNCOUNTABILITY. The Lowenheim/Skolem-Theorem does not hold for SOL.
Given that sense of expressivity the only adequate set theory may be taken
to be ZFC2. Unless — still following this line of reasoning — one incorporates

very large cardinals (like ‘measurable cardinals’) as these aren’t even
uniquely 3™ order describable (cf. Jech 2003, p.295)!

Now, the models which spoil the work of formulas like the two above are
clearly unintended models. As a reply to the argument in favour of higher
order logic this is not as weak as an appeal to an easy recognition of intended
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models seems. It is not just so that — as logicians like Russell and Frege or
Lesniewski in pre-model theoretic semantics time sometimes said — the
formulas of our formal language carry their (intended) sense on their sleeves;
a view which only the now omnipresent distinction between pure syntax and
(almost arbitrary) interpretation casts doubt on. In case of set theory — as in
case of many other logical systems — we have a clear picture of the intended
interpretation: in case of ZF — the iterative hierarchy [the picture just outlined
in Chap. I]. The iterative hierarchy is a model for ZF, it not only makes its
axioms and theorems true, but it makes them true in their intended
interpretation — including those formulas which claim a set to be finite,
uncountable, well-ordered etc. Given the picture provided by the iterative
hierarchy the case against first order set theory based on expressive
limitations seems rather weak.

On the opposite, one may raise worries about SOL. In a wide sense of “logic”
many formal systems are logics, sometimes just a set of formulas with
closure conditions is taken as ‘a logic’. Logic as related to (human) reasoning
requires a much narrower sense of “logic”. A logic, roughly, models some
ways in which (human) reasoners derive consequences from premises. The
modelling typically employs a formal system with an explicit syntax and
semantics. A constraint on logics in this sense follows from the fact that
humans are finite reasoners — at least in their earthly life. Therefore they can
draw inferences only from a finite set of premises. If a consequence follows
from a set of premises, it has to follow from a finite subset of these premises:
compactness. A logic in the traditional, not technically liberalized, sense has
to be compact. As SOL is not compact, it is no logic in that sense. So
whatever else may have been arguments in favour of SOL they are to be set
aside.®

Within standard logic and an object-/meta-language distinction there might
be a fruitful division of labour: the /ogic used will be a first order system,
and the meta-language will contain a categorical description of the intended
model (as any way of spelling out the intended model, even talk of intentions
concerning reference to the iterative hierarchy, in a first order language can
be re-interpreted again).

Whatever virtues SOL as a linguistic framework has, whatever beauty
second order descriptions may have from (a) God’s point of view, the human
concept SET cannot be bound in its /ogic to them.

33 At one point Shapiro (1991, pp.50-53) seems to see the problem, but proposes only

vaguely to keep SOL semantic validity and justification in correct inferences apart, which
at least sounds like forsaking capturing logical reasoning in a formal system. On some
second thoughts by Shapiro cf. Shapiro 2003.

It may also be worth reminding here that the non-standard models of PA, used as toy
examples of a side-effect of compactness in introductory logic classes, have the unnatural
features that “+” and “*” cannot be generally recursive in them.
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By way of comprehension that logic naturally provides U, so that ideally we
incorporate U at this level (i.e. not at some meta-level somewhere else).

Let us, finally, look at another theory beyond the size limitations of set
theory: Category Theory.

Category Theory wants to be even more abstract than set theory. Sets are just
one category among many. According to its ‘official history’ category theory
was invented as a branch of foundational studies because of the size
limitations of standard set theory ZFC. One wanted a theory dealing in
collections which unify all — really all, one might say — of a kind, especially
all sets, even all categories.

Many introductory books in category theory — like many in set theory —
follow a more or the less naive approach. They introduce a category of sets
(cf. Lawvere/Schanuel 1991,pp.13-21). This includes a domain and an
identity map. This domain has to be U and the identity map then has to be a
function f:UOU. Thus one seems to have U with its problems (e.g. a function
£:UxUD0{0,1} representing membership).

Self-reflective category theory distinguishes categories from ‘meta-
categories’. Meta-categories are in some sense ‘larger’. Mac Lane (1998,
pp.7-26) introduces a category of sets with a ‘universal set’ Uc. This is
defined as the closure of several set building operations:

(1) x€ue Uc= x€ Uc

(1) x€ Uc, ye Ue = {x,y} € Uc, <x,y>€ Uc, xxy€ Uc
(11) x€ Uc= p(x)€ U, Uxe Uc

(iv) o€ Uc

(v) If f is surjective f:alb, a€ Uc, b < Uc = be Uc

Uc conspicuously is not defined as {x | x = x} and it is explicitly excluded
that Uce Uec.

On closer inspection one sees that the crucial condition (v) corresponding to
the Axiom of Replacement presupposes a distinction within the realm of sets.
(v) would be equivalent to the tautological aAb&Uc DO be&Uc if the
expression “b” was interpreted on sets in the usual sense only. “b” has to
range over collections some of which are so that their member are in Uc, b
Ug, so that they are sets themselves. (i) — (iv) could be fulfilled by some rank
Vo within V. Mac Lane distinguishes ‘small’ from ‘large’ sets. “b” in (v) can
range over ‘large sets’. Uc is a large set comprising only small sets. Therefore
UceUc.
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Calling collections with closure conditions like (i) — (v) ‘universes’ invites
asking for the universe of all universes (i.e. some really universal collection).
In fact this is a distinction between sets and classes again. Uc is closer to V
as to U understood here. The category of sets is a meta-category then.
Applying the powerset operation to Uc yields a cardinality beyond Uc.

Category theory deals with more of these meta-categories, each dealing with
a collection that is treated in other theories as a class. Category wants to be
even more abstract, however, Mac Lane (1998, p. 23) proposing a category
of all meta-categories or a category of proper classes. This takes up the
problem that classes in NBG should form a collection, which cannot be dealt
with in NBG itself.

These very large collections (e.g. the category of all meta-categories),
however, play no role in theory building in (applied) category theory.

The meta-theory of category theory is usually a mixture of FOL and basic
set theory!

If — sometimes — category theory is introduced as an alternative to a basis of
mathematics in set theory (cf. Mac Lane 1998, pp.289-91) more basic
concepts (like FUNCTION, DOMAIN, PULLBACKS) are needed than € in set
theory. Supposedly we can easily understand them (only) because we already
understand their usual sense from a set theoretic context. The concepts SET
and MEMBERSHIP seem to be more intuitive and elementary. The basic
axioms of set theory seem to be more natural than corresponding basic
axioms of category theory as well.

In its modelling of ‘small’ categories category theory, therefore, can be seen
as modelling up to a rank V. in V. With respect to V and other ‘large’
categories, the question of the collection of them resembles the problem of
the class of classes in NBG or MK.

What category theory needs can be provided by (paraconsistent) set theories
with U. Such theories thus, additionally to their other merits, provide an
option to unify two branches of standard mathematics, to re-integrate
category theory into set
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III

VIRTUAL SETS AND CONSTRUCTIVISM

As the problem of universality cannot be pushed up an ontological level to
classes, we have to look at set theories dealing with the presence or absence
of a universal set.

Quine (1963) offers the ingenious idea of having a set theory with a universal
set U = {x | x =x} and not really having it at the same time!

In Set Theory and its Logic Quine tries to set out the common core of
different conceptions of sets, i.e. he tries to develop as much set theory as
possible with as little axiomatic assumptions as possible before introducing
the axioms that set, say, ZFC and NF or NBG apart. One of his main tools
in this enterprise is his theory of ‘virtual’ sets**. Virtual sets are set
expressions built by curly brackets and set abstraction (like: {x | x>y A X #
z}) that occur on the right hand side of “€”. These set expressions thus are
used to build statements of the form: we {x | ¢(x)}. Since the language under
consideration allows for statements like “x €y’ these set expressions function
as singular terms syntactically on a par with variables that can be interpreted
as having some set as value. The crucial point about their virtuality is that
they cannot be quantified over (in that position to the right of “€”). They are
not members of any set (virtual or existent). Since Quine follows the
methodological maxim that only those entities are admitted into a theory that
are quantified over, these set expressions do not stand for or denote entities.
They are short hand for statements in which conversion has occurred, i.e.
we {x | ¢(x)} 1s short — depending on the length of ¢, of course — for @(w).
They are virtual also in the sense that some such expression might be
quantified over /ater, so we do not know when we see such an expression
whether it never materializes into a set later on. They can be quantified over
indirectly in expressions like: (Ay)(y = {x | x < 18} A ye€z). One can thus
introduce existential commitments piecemeal. One can have true inclusion
and identity statements for virtual sets without these sets existing as {x|p(x)}

3% Quine speaks of ‘classes’ but uses “class” synonymously to “set“. Martin’s theory
of belief also works with virtual sets (cf. 1969, pp.123-35). (Glubrecht/Oberschelp/Todt
1983) combines ideas from the Calculus of Classes with Quine’s theory of virtuality, but
also adds virtual objects (in some kind of ‘outer domain’ like in Free Logic) as
denotations for virtual sets!
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c {x] y(x)} means (Vx)(p(x) D y(x)); and correspondingly the identity of
virtual sets is a bi-conditional statement.

Quine starts with a definition and an axiom for “=" ensuring extensionality
of sets and a pair of weak axioms (providing the existence of & and of pair
sets, {X, y} for all x and y), which given the framework of virtual sets provide
the finite sets (only). This framework contains FOL (with a t-operator) and
the usual set theoretic constructions like unions and cuts. It contains the
identification of objects with their unit sets!*

Quine’s framework also can express the existence of a set x by “xeU” with
U being the universal set {x | x = x}, which may itself be merely virtual,
however! U only contains existents, since the “x” left to “|” carries
ontological commitment. Classes are thus excluded from the theory.
Existential formulas are needed, since by virtuality not every singular term
refers, and the usual quantification rules have to be restricted to existing
objects.

This resembles Free Logic and free usage of non-referring singular terms.
Bencivenga (1976) thus tried to turn Quine’s ideas into Free Set Theory
(FST). In contrast to Quine’s theory FST allows virtual sets to be members
of virtual and of existing sets. Every virtual set has its singleton. However,
as FST defines J as the set containing no existents and postulates
Extensionality as equality in existing members all the singletons of virtual
sets are identical! All are identical to &. Not much is gained so. As Quine
may allow for a virtual Russell Set FST shows the antinomic sets to be non-
existent. FST disproves the existence of the set of all existing sets, which is
only virtual in Quine’s theory, but where U # . The virtual set of all virtual
sets does not exist in Quine’s theory, and it is provable identical to & in FST.
So FST provides no real progress. [We come back to the usage of Free Logic,
however, with system APS in chapter V.]

Virtuality is a powerful idea, as can be seen by its employment in arithmetic.
Finite sets turn out to be sufficient for standard arithmetic! Each natural
number can be constructed as a finite set, say the set of its predecessors (the
predecessor relation being the converse of the usual successor relation). For
some purposes of arithmetic we need to talk about the set of all natural
numbers however. Z introduces the set of natural numbers for this purpose
by the Axiom of Infinity. This need for infinity can be circumvented. The
decisive idea is to use a virtual set instead of the Axiom of Infinity. The
Axiom of Infinity uses the successor operation and so ‘looks forward’
towards infinity. One may also use the converse of the successor operation
and ‘look backwards’ instead. We take & as representing 0, as usual. The
successor function is modelled by the function giving for any x the unit set

35 This is a substantial and controversial assumption. We come back to it later when we

discuss theories for which this distinction is of outmost importance.

40



{x}. Let us denote the predecessor function by “¢” and the closure of a
function f with respect to a set x by “f*x”. Now we can define that some
number x is smaller or equal than a number y by:

) x<y #(Vz)(yezAd*zczDxez
y y

1.e. x is smaller than y if x is present in all sets which contain y and are closed
under the predecessor function. We can now define N by

(N) N is short for “{x | & <x}”

Nothing demands that N is more than virtual! Note that the quantifier in (<)
needs only to range over finite sets. The finite sets can be identified at this
point as sets that contain some number as largest element and are closed with
respect to the predecessor relation. A further axiom — a finite version of the
Axiom of Replacement — is added:

(FR) The range of a function applied to a finite set exists.

This again yields only further finite sets. By this axiom mathematical
induction can be derived as the scheme

D 0(D) A (Vx)(9(x) D @({x})) Ay € NDg(y)
Given the finite version of replacement, induction and the thus available
notions of iteration and ancestral the well known arithmetical operations and

(Peano/Dedekind) axioms for addition, multiplication and exponentiation
can be derived (Quine 1963: §16).

Arithmetic can thus be done without infinity, it seems. No explicit
commitment to infinity has to be introduced in the corresponding core set
theory.

Quine’s theory, however, gives way to ever larger infinites when the need
for real numbers arises, supposing that there is a need for real numbers.
Rational and real numbers are introduced as sets of sets of natural numbers.
For these definitions to work (i.e. get beyond the empty set) one has to ensure
that for arbitrary subsets of N their union exists, and this is an existential
commitment to infinity. One such axiom of infinity then is:

(INF) (Vx)(xc N ox e U).

The main problem for our topic universality is, on the one hand, again the
presupposed and non explicit meta-theory. For instance: the quantifier in (<)
has to range over the set of all finite sets, and this set, of course, is a non-
finite set. The meta-theory laying down the truth conditions for the
quantifiers in this set theory has to use an infinite domain. The “x” in the
definition of the universal set U has to range over all sets.

On the other hand the idea of mere virtuality itself seems problematic. Take
the collection of all x such that x = x. By means of virtuality the theory can
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talk about that collection, but whereas the theory assumes that the items in
the collection are existent (it even defines existence as membership in U) the
collection is merely virtual. In case the theory develops in the direction of Z,
the virtual set U has to stay merely virtual, on pains of deriving the
antinomies using U in the Axiom of Separation (AS). In this case the
treatment of universality comes down to its (non-)treatment in Z. In case U
will be quantified over later (i.e. its virtuality is desolved into real existence)
one option will a development in the direction of NBG U undergoing
metamorphosis into a class. The treatment of universality comes down to its
treatment in NBG, which again means its non-treatment for classes. Another
option in case U will be quantified over later will be the avoidance of classes.
In that case, however, we should expect some substantial changes in the set
theoretic framework (e.g. exchanging Separation for a restricted subset
building axiom). Prima facie quantifying over U makes U existent and then
we have:

UeU

contradicting the Axiom of Foundation. And we should even have — for a
start! —

pU)eU

which with the immediate @ (U) < U yields more strange results. U€U not
just contradicts the Axiom of Foundation, but also contradicts the standard
ways of introducing cardinal or ordinal numbers (as the elements of @ (U)
exist, ¢ (U) cannot have more members than U, thus, contradicting Cantor’s
Theorem, g (U) has no larger cardinality than U).

All this seems plainly bizarre (of course only given our standard/iterative
idea of sets). What makes this option interesting is that it deals with the
problem of universality in set theory itself. We preferably explore some set
theories with universal sets (i.e. universal sets which are more than virtual).

Quine’s theory 1s embedded within standard logic and set theory. Virtual sets
are virtual in the sense of not being real and not yet being real, but within
reach of stronger axioms. Quine’s standard meta-theory involves actual
infinity and standard set theory.

Intuitionistic ZF (IZF) does not change the picture with respect to U. It even
allows for a double negation interpretation of ZF. Some constructive set
theories work with classes and introduce V as well. In this case the objections
of the preceding chapter apply. Constructive and intuitionist set theories also
forsake the full Powerset Axiom and may restrict Separation; to avoid re-
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introducing fertium non datur they have to forsake the Axiom of Choice and
the Axiom of Foundation (cf. Aczel/Rathjeu 2001). Thus they add non-
intuitive features to the problem of the universal set in Z.

Constructivity in the sense of the Axiom of Constructability
(VL) V=L

with L being the realm of constructible sets (i.e. the sets which are built by
separation using a formula ¢ of the language) makes use of the classes V and
L and is in fact a non-standard version of ZFC+GCH (with restricted
Powerset, of course).

A more radical version to the stepwise approach to set existence is (radical)
constructivism. The constructivist allows only for those sets which either
have been individually or generically shown to exist. Allowing for schemes
of existence proofs results in embracing a fotality where not all instances
have been shown individually. Once some such large totality has been
admitted larger ones result by construction. Nonetheless, as they are under
construction even the liberal constructivist can work with the idea of a
growing universe. The realm of mathematical objects grows as our
constructive efforts enfold. Seen in this light a constructivist may hold that
there is no universal set as the idea of its existence presupposes the wrong
idea of an already completely present universe. (This may resemble the
Kantian undermining of ‘the antinomies of pure reason’, which each
presuppose — according to Kant illegitimately — a developing series as also
completely ‘given’.)

One set of objections to this constructivism focuses on issues of cardinality.
The sets we (as human kind) have constructed individually are only finite.
Generic proofs may put an infinity of sets within reach. Again the number of
thee proof schemes we (as human kind) have constructed will be finite. The
constructivist’s position seems to fall back into a theory of a merely potential
infinite or even strict finitism (of no infinity at all). Both positions deviate
substantially from received, successful mathematics. They carry the burden
of proof whether they can deliver what the sciences need. Strict finitism may
commit us, further on, to paraconsistency (cf. Bremer 2007).

The second set of objections focuses on the current stage of construction.
Even if construction work continues, at every single stage of construction we
may ask whether there is a universal set containing all the sets constructed
so far. At any stage, shouldn’t {x | x = x} exist? All questions concerning U
thus return, even if they are now aimed at a succession of ever increasing
universal sets. Non-realism so does not help at each step.

This obviously applies to a predicative set theory of rank-wise construction
of sets within an iterative hierarchy (cf. Wang 1970,pp. 559-623).
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IV

CONSISTENT SET THEORIES WITH UNIVERSAL SET

On occasion of the 1971 Berkeley symposium celebrating Alfred Tarski’s
achievements in logic and algebra Alonzo Church, who otherwise did not
work much in set theory, presented a new system of set theory (Church
1974).

Church saw the two basic assumptions of post-naive set theories in a
restriction of comprehension to a form of separation (as in ZFC) and in a
limitation of size (as in NBG). Similar to the criticism levelled against
Limitation of Size in chapter II above Church regarded Limitation of Size as
ad hoc (against the antinomies) and ‘never well supported’ as it proclaims a
stopping point of further structures although classes are introduced (in NBG
and MK) as collections, which can be quantified over. Church’s set theory —
let us call it “CST” here — follows ZFC 1n its idea of separation, but allows
for collections that are ‘large’ in a way that even the larger transfinite sets of
ZFC are not. CST does not introduce classes, but introduces a distinction
within the area of sets. It allows even for U = {x | x=x}.

CST distinguishes between ‘low sets’, which have a 1:1-relation to a well-
founded set, ‘high sets’, which are (absolute) complements of low sets and
‘intermediate’ sets which are neither. These labels pertain to the cardinality
of sets. High sets are in 1:1-correspondence to the universal set U, low sets
never. Because of the CST version of the Axiom of Choice for a set x which
1s not low every ordinal has a 1:1-relation to some subset of x.

So the universe of CST may consist only of sets, but not all are well-founded.
Obviously U€U. U is the complement of &, so U is the paradigmatic high
set. & is well-founded, and, of course, @€ U. The constant predicate “wf( )”
expresses the property of BEING WELL-FOUNDED, defined in the usual sense
(using some order relation “<”):

(Vx)(wi(x) =x=J V
(Vy)y < x 2 (y#© 2 (Fz)(z€y A (VW) (WEY D z<w))))).

CST can be phrased as a second order system, quantifying over single- or
two-argument open formula ¢. One could understand this second order
quantification as using classes, but only given a full-blown second order
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semantics [cf. Chap. II]. One could use schemata instead (i.e. having only
free variables for open formula), as in ZF. We follow the first option here
and make CST a second order theory.*

The CST axioms are:

¢ Extensionality, Pair Set, Sum Set, Infinity as in Z

e Choice: (VR)(VX)FY)R(x,y) D 3NV OR(XK./()

e Product Set: (Vy,z)(y€z D (Ju)(Vx)(xEu=yEz D xE€Y))

e Separation, Powerset, Replacement restricted to a condition “wf(x)*,
e.g. Axiom of Powerset: (Vx)(wf(x)D(Jy)(Vz)(zE€Ey =z < X)),
Axiom of Separation: (Vx,F)wix)D(Jy)(Vz)(zEy=z€X A F(z))

(1)

[where “y” 1s not free in “F”]

The Axiom of Product Set allows having a substitute for separation in high
sets. What is missing is the Axiom of Foundation of ZF.

These axioms of CST are strong enough to yield ZF. Dropping the non well-
founded sets one gains a ZF universe. The two theories are equi-consistent
(cf. Church 1974, §5). And without violating this relative consistency CST
can be extended by axioms which go beyond ZFC. These are: Strong Choice
(that U can be well-ordered), Cardinality Axioms (that there are cardinal
numbers in the sense of Frege and Russell for all well-founded sets) and
especially the Axiom of Complements:

(VX)Ey)(V 2)(zEy=z£x).

The existence of absolute complements and the existence of U make CST a
more natural set theory than ZFC, one may argue.

The argument in ZFC from the Axiom of Separation to the non-existence of
U and Cantor’s Theorem pose no problem for U and ¢ (U) for the same
reason: the Axiom of Separation and the Axiom of Powerset are restricted to
well-founded sets.

The argument to the non-existence of U [cf. Chap. I] now establishes that U
is not a well-founded set. We knew that before. As U is not well-founded we
do not have ¢ (U) in the first place.

One might now argue: So, in CST as well, there are some collections which
are there — 1n this case inter alia the collection of all subsets of U, which are
obviously existent if U is — but cannot be collected into a set; some
collections which should exist, like ¢ (U), do not exist, because they are too

36 Remember that in a full blown second order setting the Axiom of Choice is not

equivalent to the Well-Order Principle. In fact the Well-Order Principle is not a theorem
of ZFC2 (cf. Shapiro 1991, pp.106-108). Neither the presence of the Axiom of Choice
nor the presence of Foundation implies that all sets can be well-ordered in ZFC2.
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large, just as in NBG set building operations cannot be applied to classes.
Like NBG and MK tell us not much about classes, CST uses ‘large’ sets,
but large sets cannot do much, since they are not subject to Separation or
other set building principles.

This criticism, however, should be kept apart from a similar criticism
levelled against NBG. In fact, all subsets of U are collected into a set — U
itself. What cannot be done is separating a set g (U) from U. The same
applies to the ordinals: U is a sef in which all ordinals are collected, but — on
pains of re-introducing the Burali-Forti antinomy — we cannot separate a set
which collects only the ordinals. So does CST make some progress in
comparison to NBG? On the one hand CST can avoid using the second
ontological category of classes, with all its problems. On the other hand NBG
can collect just the ordinals into their own proper collection, albeit a class.
NBG cannot introduce ¢ (V), as CST cannot introduce ¢ (U).

It is true that although the principal idea behind CST was rejecting
Limitation of Size, CST exhibits some shadow of Limitation of Size: All
high sets are by definition of the same size as U, just as in NBG all classes
are of the same size as the class of sets.

The widest known set theory with a universal set U — for which we have
UeU - is Quine's NF (from his paper "New Foundations of Mathematics",
1937). NF is Quine’s set theory with a universal set that is not just virtual is
NFU.

NF works by Extensionality and a Comprehension Scheme that is not as
restricted as in ZFC.

Quine's NF Comprehension Scheme uses the idea of stratified formula
(similar to the simple theory of types):

@AV)(VX)(x € y = 0(x))

where "y" is not free in @ and ¢ is stratified. A formula is stratified if the set
on the right hand side of "€" is of a higher level than that on the left, and its
definition does not include that on the left. A test for stratification consists
in level assignments for sets or in trying a translation into the simple theory
of types. The language of NF itself is not typed, thus avoiding duplication of
structurally identical sets at different levels, but NF uses the stratification
test to avoid the antinomies. NF is equiconsistent with the simple theory of
types supplemented with the full ambiguity scheme, which asserts that a
formula ¢ is equivalent to formulas ¢', @* ... structurally similar to ¢ with
type levels uniformly raised by 1, 2 ...
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NF has the power to introduce Pairing, (Absolute) Complement, Powerset,
and Union as instances of Comprehension.

NF allows U = {x | x =x}, since “x = x” is a stratified formula. {x|x€y} can
be stratified, defining the so-called ‘essence’ of an object (the collection of
all its properties). “|x| = [{,{J}}|” is stratified as well, so natural numbers
(in this case: 2) can be understood in Frege’s way. Stratification excludes,
however, the usual definition of an infinite set (as in the Axiom of Infinity
in Z). One meets in proofs and constructions in ZFC many unstratified set
definitions. NF has to forsake these sets or has to introduce workarounds.
Cardinal numbers and ordinal numbers come apart (cardinal numbers are not
special ordinal numbers as in ZFC).

Non-stratified formula can be used in NF (this is different to Type Theory),
but they cannot be used to define sets. Since non-stratified formulas can be
used in NF one does not need a universal set or an empty set for every level
(as in Russell's Type Theory) to have well-formed formula.

The antinomies — especially the (original) Russell Set — are avoided, since
the corresponding open formulas in the Comprehension Scheme are not
stratified. NF itself is not known to be consistent. NF with the Axiom of
Counting, which says that a cardinal number is equal in cardinality to its
singleton image, can prove the consistency of Z. No relative consistency
proofs to ZF are available. Note that instances of Replacement are not
stratified. Some subsystems of NF have been shown to be consistent (cf.
Forster 1992, Holmes 1999).

UeU means that Cantor's Theorem does not hold (in general) in NF; but the
set of unit sets of its elements is smaller in cardinality than U itself! The usual
proof of Cantor’s Theorem defines a set y€ @ (X) relative to a supposed
bijection f between x and @ (x) as y = {z[z€x A z&f(z)}, which is not
stratified. In NF one can define, however, y = {z|z€x A z& f({z})}, which
1s stratified with f being a supposed bijection between the set of singletons
of z€x and ¢ (x). By the usual indirect argument one sees that there is no
bijection between {z|z={w}AweEx} and g (x), which means | (x) >
{z|lz={w} Awex}| = | p1(x)]. As ¢ (U) < U we have |U| > | o (U)| and thus
with the previous inequality we know that the cardinality of the set of
singletons of elements of U is smaller than [U|! |U| > | ¢1(x)|. That could
mean that not all elements of U possess a singleton: although we have the set
of all singletons in NF, as {x| (dy)(x= {y})} is stratified, not all objects seem
to have a singleton. This cannot be the solution. Comprehension provides a
singleton for any object z: “x€y = x = z” can be stratified. Contradiction is
avoided finally by the non-existence of the function which maps any object
to its singleton. This function does not exist even though every object has its
singleton!
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NF has other highly controversial features like the existence of infinite
descending chains of cardinals, what conflicts with the Axiom of Choice,
which thus doesn't hold in NF, which again implies — even in the absence of
an Axiom of Infinity — that the universe of NF has to be infinite, since all
finite sets can be well-ordered. The universe of NF, supposedly U, cannot be
well-ordered then. NF might be consistent, though, with the claim that all
well-founded sets can be well-ordered. Some functions (like the successor
function) are not part of the universe — so where are they?

One can extend NF by introducing classes. In fact if one denies in NF
Rosser’s Axiom of Counting [see above] one can prove the existence of non-
set collections which are finite! Indeed a ‘strange landscape’ (Forster 1992,
pp.29-32).

If one restricts the set building axioms to sets and uses unrestricted class
comprehension one arrives at Quine’s system ML (cf. Quine 1963, §§40-
42). The problems the system NF has with unstratified induction and its
incompatibility with the Axiom of Choice are resolved then. There is a class
of all sets, UU, and Cantor’s Theorem does not apply to it, as it is no set (i.e.
has no powerset at all). Apart from resolving these problems classes play no
constructive role in ML. Obviously we find ourselves in a system very
similar to MK, and corresponding criticism applies here [cf. Chap. II].

A version of NF that tries to avoid many of the peculiarities of NF is NFU
(NF with urelements), developed by Randall Holmes (2005). NFU is built
from NF by adding urelements and restricting extensionality to non-empty
sets, introducing & by an axiom. One may think of it as a subsystem of NF
that allows only such models which contain the urelements.

NFU is consistent! It is consistent with the Axiom of Choice!

NFU is an extremely strong set theory. It can provide models for ZFCU by
having very large cardinals (strongly inaccessible cardinals).

By working with a longer (finite) list of simple axioms (like Extensionality,
Complements, Unions, Singletons, Cartesian Products, Converses, Domains,
Projections, Singleton Image of a Set, Choice (!), Infinity...) Stratified
Comprehension can be proven as a theorem!

The universal set is provided by its own axiom:
(U)  {x|x=x} exists.

U contains all sets as elements. All sets can be well-ordered, which is
equivalent to the Axiom of Choice. So U can be well-ordered, in contrast to
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U in NF. By the existence of U, the Axiom of Complements and Stratified
Comprehension absolute complements exist.

NFU also has its peculiarities: urelements, atoms and ordered pairs (!) are
taken as primitive. One wonders what is supposed to be ‘in’ the ordered pair
<x,y> if not x and y. 4And the NFU Axiom of Ordered Pairs contains the
standard identity condition on ordered pairs without saying that an ordered
pair is a set. The Axiom of Pairing of Z looks more natural.

More problematically: [€], {<x,y> | xey}, does not exist, the existence of
[€] leading to antinomies.’” Whereas we thus have a set U, which may stand
in as the extension of the predicate “set”, we have no extension for the
membership relation, although [ €] looks as natural as U. Interestingly [<] =
{<x,y>| X <y} exists. So in many cases “{x}Cy”’ may substitute for “x€y”.

The non-existence of [ €], which, of course, entails [€]gU, entails that the
membership relation is not modelled by U (U has no element corresponding
to it), so that U cannot be a model for NFU itself. So as with the standard set
theories ZF, ZFC, although working with a universal set, NFU has to look
outside of itself for models. If the universal set is really universal, where
should that outside be? We seem to be back to larger cardinals or similar
collection like entities or some hierarchy [cf. Chap. I & I1].

Not every supposed set exists, e.g. the set of all Cantorian ordinals. This is
not better than in ZF. Some collections (like U) which do not exist in ZFC
can exist in NFU, but as NFU does not distinguish sets from classes, some
collections (like that of Cantorian ordinals) which exist in NBG do not exist
in NFU. NFU can be viewed as trying to capture some middle ground
between the other systems. This yields its own peculiarities.

Especially problematic is that some version of Cantor’s Theorem 1is
provable. The large sets (like the set of ordinals or U) in NFU have the
strange property of not being equinumerous to their singleton images! How
can that be? Although every object has a singleton (by the Axiom of
Singletons), just as in NF the function giving the singleton to every object
does not exist.*

|©1(U)] < |U| seems to contradict the Axiom of Singletons, a provable
contradiction only being avoided by the non-existence of a general singleton
function (cf. Quine 1963, p.293). We have — so to say, in analogy to

37 Proof (Outline). If [€] exists, so does its complement —[€] by the Axiom of

Complements. [=] = {<x,y> | x =y} exists, since “x =y is stratified. Then the cut of [=]
with —[ €] exists, and this cut is a cousin of the Russell Set: {<x,y>|x=y A x ¢ y}.

38 Proof (Outline). If the function f:U— g 1(U) existed, extensionality of the singleton
would yield a function !, so |U| < | ¢ 1(U)|, which contradicts the Cantorian argument to
| 1(U)| <|UJ (given above with respect to NF). B

Holmes (2005, pp. 109-110) provides another proof which relates to stratification.
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Separation restricting Comprehension in Z — restricted singleton
construction!

So a corollary of the non-existence of the (general) singleton function is that
the cardinality of the set of singletons of members of U, | ¢ 1(U)|, is less than
the cardinality of U. This leads in NFU to the distinction between ‘Cantorian
sets’ x with [x|=|¢1(x)| and ‘non-Cantorian sets’, which resembles other
limitation of size distinctions.

These cardinality issues lead to Specker’s Theorem (cf. Holmes 2005,
pp-132-34):

| pU) [<[U]

which is read as proof that there are (many, many) urelements/atoms besides
sets in U. Atoms, which have no members, are not elements of  (U), which
contains all subsets of U, but not non-sets like atoms. If there are no atoms
one expects for a system with a universal set U that one has | g (U)|=|U|. In
fact most objects in U in NFU then have to be atoms or pairs (i.e. ordered
pairs not reducible to sets).

Unlike some version of NF in (Quine 1963) atoms are not identified with
their singletons in NFU. As mentioned, ordered pairs are also objects in their
own right besides sets. Ordered pairs can be taken as atoms in NFU as no
claim with respect to composition — only with respect to their identity
condition — was made. Specker’s Theorem mirrors this conception.

Again:

Specker's Theorem for NFU asserts that most entities in U are not
subsets of U, which means most of the universe has to consist of
urelements!

So: in all known models of NFU |U| > | o (U)|! All relations are subsets of
UxU, and all functions f:UODU should, if they are allowed to exist,
themselves be sets of ordered pairs, thus be elements of U, thus be available
as their own arguments, thus sometimes be forbidden to exist as sets at all in
a consistent setting (e.g. a function of negative self-application). NFU itself
can have models only in a realm which possesses properties quite different
from what we expect of sets. NFU, so, deals not just with sets. In fact the
non-sets vastly outnumber the sets in any model of NFU. Ideally the non-
sets contain just the urelements, but by the argument above concerning the
Axiom of Singletons we should expect there to be a collection containing the
ordered pair of any x and its singleton, but this collection cannot be a set in
NFU. A crucial question is whether NFU can at least recapture ordinary sets
— ZFC-like entities — as a sub-domain. Even though this is possible,
however, we regain simply ZFC as a sub-universe — and are none the wiser
with respect to our universality problem, as U, because of its behaviour in
NFU, cannot be part of that recaptured realm. U is not ‘Cantorian’. Even the
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ordinals of NFU cannot be well-ordered in a set model of NFU! Holmes does
not introduce proper classes into NFU, but admits their existence,
supposedly objects of a broader theory (cf. Holmes 2005, p.50). NFU is not
truly universal, as well.

NFU, thus, may provide a lot of machinery to do ordinary mathematics, the
gain with respect to our set theoretic intuitions brought by having a universal
set U, however, seems to be more than lost by the consequences of Specker’s
Theorem and the absence of [€].
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v

PARACONSISTENT SET THEORIES

WITH A UNIVERSAL SET

ZFC, NF/U, even NBG and MK forbid the existence of collections which
intuitively should be there as all items to be collected are there: be it not just
U, but the set of all ordinals, [ €], the general singleton function, the pair of
the class of ordinals and the class of cardinals etc. Maybe these collections
are not sets, set theory only dealing with sets. Mathematics, maybe, has no
practical use for other collections. Maybe — maybe not. If some theory saves
the intuition that these collections are collectible this could furnish it with a
crucial advantage over its competitors.

In Z there is neither an unrestricted comprehension axiom or schema nor a
universal set. Paraconsistent set theory regains both.*

Apart from semantic closure set theory is one of the main motivations for the
strong paraconsistent approach (so-called ‘dialetheism”), which accepts both
that there are some true contradictions as well as the existence of inconsistent
objects. The consideration starts with the simple question: What is a set?

The standard account of concepts in FOL semantics goes like this: What
does “( ) is a tree” refer to? It refers to the set of all trees. A concept/property

3% Whereas in the other paragraphs common knowledge of standard logic was assumed

we have to divert in this paragraph several times to outline the basics of the involved
paraconsistent logics or theories. In most cases only a rough sketch is provided to save
space. There are excellent introductions to Relevant and Paraconsistent Logic (and
paraconsistency in general) on the market. Brady (2006), Priest (2006) and Routley
(1980) supply in-depth coverage of their respective systems, semantics and theories. The
preferred system in this chapter, APS, is outlined in somewhat greater detail, as it cannot
be found elsewhere. Therefore in this chapter additional schema are used which show the
syntactic type of expressions more clearly: “a”, “¢” are a schema for individual terms,
“P” is schematic for some general term, “R” for some relation. “A”, “B”...(sentences),
“G()”, “F()” ... (general terms), “a”, “b”... (singular terms) are abbreviated expressions
of the formal languages themselves. We allow rules to use these expressions. In case rules
or axioms involve no schemata but abbreviations the systems are understood as
containing rules of uniform substitution into an appropriate syntactic type, excluding, of
course, substituting into logical constants (like “=" or the existence predicate “E!( )”).
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1s understood if we understand what its extension is. Now, what is a set? It
cannot be the extension of “( ) is a set”, since this extension would be a
universal set, but there is none in Z, the standard set theory. So in standard
meta-theory there is no set/extension corresponding to our usage of “( ) is a
set”. For restricted usages (sets of some kind, cardinality, order etc.) there
are sets, but one cannot speak of sets in general. Standard set theory seems
using a fundamental notion that can at best be partially explained by this
theory! This runs against our intuitive understanding of “set”.

Naive Comprehension expresses not just naivety, but the intuitive idea of
collecting objects with respect to some condition or property. Especially
“x=x" looks innocent enough to warrant a collection.

And the absence of a universal set is not just a problem of understanding
what a set 1s. Some set theoretical explanation of other concepts make use of
a universal quantification about sets (cf. Priest 2006, pp.28-37).

If one defines:

Ykp £ ¢ follows from a set of premises X [Jif and only ifl]
every interpretation that makes all yeX [Itrue makes ¢ true.

one talks about any interpretation. And the domain of an interpretation is
arbitrary. It may be a set of arbitrary high rank. So the supposed definition
talks about all sets of an arbitrary high rank (i.e. of the completed hierarchy),
but in ZFC we can never get at all sets unified!
So it seems that our understanding of consequence cannot be modelled by
ZFC. ZFC can only define an incomplete model thereof.

And if there is no universal set, there is no universal complement of a set.
Some theories (category theory) want to talk about such sets, however, as we
have seen. Granting this reasoning some prima facie plausibility calls for a
closer look at paraconsistent set theories. If the costs of paraconsistent set
theories add up more than expected, some of the supposedly ‘intuitive’ and
‘innocent’ claims have to be reconsidered [in chapter VI].
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Richard Routley was one of the first to introduce. paraconsistent set theory.
He uses the Relevant Logic DL (cf. Routley/Meyer 1976)

Axioms:

(A1) A—>A

(A2) A->B)AB->C—>A—>C
(A3) AAB—>A

(A4) AAB—>B

(AS) A->BAA—>C)—>A—->BAC)
(A6) AABVC) > AAB)VAAQC
(A7) ——A > A

(A8) (A—>—-B)—> (B —>-A)

(A9) A—>AvVvB

(A10) B—>AvVB
(A11) A->COAB->C)—>(AvB)—>0)
(A12) —A A =B —> —(A v B)
(A13) —(AAB)—>—-Av-B
Rules: (R1) O¢,0¢p —»> y = Oy
(R2) O0¢ — vy = 0(=y > —0)
with the following quantificational extension (Routley 1980, p.290):
Axiom schema:
(A14) (Vx)P(x) > P(3)
(A15) (Vx)(A = P(x)) > (A > (Vx)P(x)) *
(A16) (Vx)(A v P(x)) = (A v (VX)P(x)) *
(A17) (Vx)(P(x) >A) > ((AX)P(x) > A) *

[* x not free in A]

Rules: (R3) |—o¢ = [HVX)op

(Naive) Comprehension is expressed with a Relevant conditional:
(NCr) (Ay)(Vx)(xey © P(x))

(NCkr) has no restrictions on “P()” (like “y does not occur in P( )”) so that
one can have a set y such that xey <> —xey (taking “—( )ey” as “P()”).
This is a bizarre set of all things that belong to it iff they do not belong to it!
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Such usages of (NCr) immediately raise the question of inconsistent
ontology (i.e. whether and where are objects like the set described?).

(NCkr) is no longer well-founded: a set like the Routley Sety = {x | xey <>
—xey} may contain y itself. (NCr) allows for {x | xex}.*’ There is even the
sety’ = {y | xey <> —xey} — etc.

Rephrasing the Axiom of Extensionality using a relevant biconditional
allows deriving even the Axiom of Choice from it and (NCg). Since also
irrelevant theorems follow, the Axiom of Extensionality is replaced by a rule
and a definition:

(EXTr) (1) x=y=>x€ez->yez
(1) x=yZ(Vz)(zex <> zey)

This rules allow for the substitution of identicals and defines how identity of
sets 1s to be taken. For substitution we have:

(SUB) DA <> B = 0¢p(A) — ¢(B)

1.e. if A and B relevantly imply each other than B can be substituted in any
context @ of A for A so that the resulting sentence is still relevantly implied.
(Different antinomies do not imply each other.)

(NCr) allows defining sets otherwise introduced by axioms:
Existence of the empty set J:
AY)(VX)(xey > —x=X)
This set is empty, since even in DL we have: (Vx)x=x
Existence of the absolute complement of some set x:
Ay)(Vz)(zey <> —z€eX)

x 1s some arbitrary set here, so that we can have the complement of any set
we wish. In ZFC there are only relative complements of x (in some superset)
because of the more restricted Axiom of Separation.

The antinomies can be derived in this set theory, but the underlying
paraconsistent logic avoids triviality.

That versions of the Axiom of Choice can be derived within his set theory
shows, according to Routley, the realistic character of paraconsistent set
theory (i.e. the domain is simply there, with all functions defined on it,
whether we have constructed them from previously constructed material or
not). If w is any family of non-empty (disjunct) sets v, any set theory with

40 So the Foundation Axiom of ZFC is not part of paraconsistent set theory based on

unrestricted comprehension. Foundation was a late comer in ZFC any way, has no
mathematical applications outside set theory, and is dropped in otherwise standard non-
founded set theory (cf. Aczel 1988).
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unrestricted Naive Comprehension (like Routley’s theory here, but also like
APS later in this chapter) can circularly introduce the choice function

Cw= {<V,X>| VEW A XEV A =(JzEV)(z #X A <V,Z>EcCw)}

The anti-foundationalist universe can be well-ordered then.

What about the metalogic of Routley's set theory? Note that Routley’s theory
is a set theory employing neither many-sorted variables nor working with
classes. Routley (1980, pp.931-33) extends his logic DKQ by some axioms
for arithmetic to his paraconsistent arithmetic DKA. He can prove that DKA
is not trivial, i.e. absolute consistent: (3@)Opka®. A system like DKA being
inconsistent does not meet the condition of Godel's Second Theorem, so can
be used itself to prove its own (absolute) consistency. This proof by Routley,
however, uses a truth functional conditional like that of the paraconsistent
logic LP. So this proof — because of the Curry Conditions (i.e. conditions
allowing deriving a version of Curry’s Paradox) — cannot be extended to
paraconsistent set theory.*! Routley and Brady (1989) nevertheless proved
the non-triviality of a paraconsistent set theory using a logic with a negation
semantics in terms of the Routley star * and the ternary accessibility relation,
which are both highly controversial in being considered artificial by many.
Brady improved on that situation by proving the non-triviality of an
inconsistent set theory (i.e. one involving inconsistent sets) with respect to a
truth-functional dialethical semantics (cf. Brady 2006, pp.242-45), the
matrixes of which, however, are contrived to the purpose and not as natural
as the matrixes of LP. He states his set and class theory in his logic DJ4Q.

Relevant Logic based set theories like Routley’s, however, violate the idea
that sets are extensional. The relevant conditional “0” is intensional (usually
having a possible worlds semantics). By its use in (NC) sets become
intensional! Limitations of substitutivity with “0” carry over to sets. For
instance X€y <> x€y A o (for some truth o) does not relevantly hold true,
thus y and {x | x€y A a} although having the same members cannot be said
to be identical (cf. Priest 2006, pp.253-55).

41" On LP and the Curry Conditions cf. Priest 1987, 2006, Restall 2000, Bremer 2005.
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Brady's version of paraconsistent set theory (cf. Brady 2006) also employs
the ideas behind (NCr) and (EXTr). The underlying logic is DJ?Q.

Axiom schemes:

(Al)
(A2)
(A3)
(A4)
(A5)
(A6)
(A7)
(A8)
(A9)
(A10)
(A11)
(A12)
(A13)
(A14)
(A16)
(A17)
(A18)

A—>A

AAB—>A

AAB—>B
A->B)AA->C)—>A—->BAC)
A—>AvVvB

B—>AvVB
A->B)A(C—>B)—»>(AvC—>B)
AABVC)>AABVAAC
—-—A > A

(A—>-B)—> B ->-A)
A->BAB->C—>A->0
(Vx)P(x) > P(4)

(Vx)(A = P(x)) > (A > (Vx)P(x)) *
(Vx)(A v P(x)) = (A v (VX)P(x)) *
P(d) —» (3x)P(x)

(VxX)(P(x) > A) > (Ax)P(x) > A) *
A A (GFX)P() > Fx)PE)AA) *

* [x not free in A]

Rules: (R1) 0O¢ — vy, 0p = Oy

(R2)

(R3)

(R4)
Meta-Rules:

O, Oy = 0p Ay

Op >y, 0y —>06=0(y—>7y)—>(@—>9)

Op = 0(Vx)p

(MR1) If 0p = Oy then also Op vy = Oy vy
(MR2) If 0p = Oy then 0 (3x)e = 0 (Ix)y

where in both meta-rules in the derivation Op = Oy (R4) does not generalize

on a free variable in .

Brady invented a semantics of content containment to avoid the unnatural
possible worlds semantics common to Routley’s systems. The content of ¢
comprises everything that can be ‘analytically established’ from ¢ (i.e. with
respect to the meaning of ¢). Given the semantics of content containment
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Brady has to use (EXTr), since the content of x =y seems not to contain xez
> yez.

In fact Brady's theory is foremost a class theory (not a set theory). Brady
distinguishes classes for which the two axioms hold and for which sentences
dealing with them have a relevant logic from sets, whose membership
sentences obey standard logic! The standard behaviour is needed to have
enough countable sets in the classes. And not using “0” for sets keeps them
extensional. The classes, however, are intensional and have other identity
conditions than sets. Classes, which also comprehend sets, are thus in at least
two respects quite different from sets. Classes comprehend individuals, sets
and classes having a property. Brady proposes several comprehension
schema like

XE {yY | [0) } ) xly {yYlo}/Y

“y” being free for “x” and ¢ maybe having a free class variable thus speaking
about its corresponding class itself. Classes are ‘logical’ collections, sets are
arbitrarily formed well-founded collections. Because of their different
logical behaviour the null sez and the null c/ass have to be different. Like in
NBG some classes correspond to a set (are ‘classically identical’ to a set, cf.
Brady 2006, p.183, 311). Not all properties built sets, only those with
‘classical membership statements’. The collection of well-founded sets, for
instance, cannot be a set itself. Brady’s theory thus consists of two parallel
sub-theories: one for sets and one for classes. Ordered pairs are — like in NF
— taken as primitive as well! Numbers are also distinct, since they are not
reduced to sets!

Brady has proved his system of set and class theory to be non-trivial and
even consistent in the narrow sense of not O¢ and O(—), but possibly O(¢p =
—(), on the condition that large parts of ZF are consistent.

Brady's version of paraconsistent set theory does not contain all of the
antinomies and ‘only’ keeps them from spreading triviality elsewhere. Some
of the antinomies do not occur. In case of the Russell set one can prove ReR
<> R¢R. To get to the explicit contradiction ReR A R¢R once needs either
the Law of the Excluded Middle or Negation Introduction. Both are absent
in DJUQ. Thus given the validity of ReR <> R¢R only one can chose to
make them both true or both false. Something similar holds for Curry's
Paradox, since Contraction does not hold in DJ?Q. Brady works by rejecting
Excluded Middle and claims that this is not ad hoc to avoid the antinomies
like RER A RgR. He argues, however (cf. Brady 2006, pp.40-41), for the
rejection of Excluded Middle by reduction starting from the observation that
otherwise antinomies were provable. Comparing restricted comprehension
(like Separation) or restricting negation (in giving up Excluded Middle) one
may well argue that NEGATION is an even more central concept and not to be
messed with lightly. In fact Brady rests his case on his logic DJ4Q in which
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Excluded Middle fails and negation is taken as an intensional
connective/operation. The majority of logicians doubt that, as we seem to
understand negation naturally in terms of truth, not meaning or content.
Brady’s approach thus leads to the broader topic of negation, which cannot
be taken up here. The burden of proof of building a viable set theory only by
messing with the extensionality of negation rests with accounts like Brady’s.

Since Brady distinguishes sets from classes he restricts the validity of
Cantor's Theorem to sets, avoiding the antinomy that the powerset of the
universal set has to be within the universal set and at the same time larger
than the universal set. The sets are collected into a class (cf. p.301). After all
Brady’s theory turns out to be similar to theories like MK or Ackermann’s
set theory [cf. chapter II]. The collection of all sets is a class. Some classes
are even within sets (are members), but these are only the classes
corresponding ‘classically’ (i.e. in standard logic) to sets. Classes are not
comprehended into a universal class of all classes. Brady’s theory thus does
not make progress in comparison to those theories with respect to our quest
for a truly universal collection of all collections, or at least a set of all sets.

One may try to gain both a paraconsistent treatment of antinomies and a
substantial amount of ‘classical recapture’ by adopting an adaptive logic,
extending it with the two basic set theoretical rules. Ideally the resulting set
theoretical logic should combine the basic power and many of the results of
straightforward paraconsistent set theories (like Routley’s or Brady’s) with
a severe restriction on reasoning with or multiplying inconsistent objects. It
should avoid classes.

The base logic may be the adaptive version of LP (Priest’s so called
“Minimal Inconsistent LP”, 1991) with standard quantificational extensions
giving ALPQ (Adaptive LPQ). Since set theory needs identity one in fact
needs ALPQ~. LPQ™ however has a too weak concept of identity, so we
need some restrictable but more powerful rule.

We have to introduce some basic ideas of adaptivity first. Adaptive logics
(and proofs) derive consequences from a premise set, but are adaptive in that
they retract some consequences if their derivation crucially depended on the
inconsistency of the premise set.

Retracting in the process of reasoning from a premise set cannot be
completely avoided, since there is no general algorithmic procedure (for just
any logic) to test whether I' or I U {¢} is consistent. So we often extend our
premise set I by a new assumption on the supposition that this extension is
consistent, although it sometimes turns out not to be. Especially if '
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depends on 'y and no negative test is available for I't~y, then we have
even no positive test for I'~¢. (The derivability of ¢ may depend on the
absence of y if say y states some exceptional condition on employing some
rule to derive ¢.) Retraction is of most interest with respect to internal
dynamics, since given one and the same premise set the sentence ¢ may be
derivable at some stage and retracted later. ¢ then might not belong to the
final consequence set, but it appeared to during some stages of the reasoning
process. An adaptive logic is characterized by two logics:

(a) The Upper Limit Logic (ULL) allows for the unrestricted application of
logical rules to derive the most consequences possible. Typically ULL is
(standard) FOL;

(b) The Lower Limit Logic (LLL) is chosen to model some type of restricted
reasoning. In our case it is a paraconsistent logic, i.e. a logic that blocks
the application of some rules of standard logic.

The adaptive strategy is the way to handle the management of restrictions
and the corresponding retractions. An adaptive logic generates a set of
consequences of an (inconsistent) IT that can lie between Conyy(IT) and
Conyr(IT). The idea of adaptation is therefore: Think of some critical rules
as applicable and make exceptions only if one of the premises is known to
be inconsistent (or problematic in some other ways to be explained below).
Since we do not know beforehand which premises are consistent, we may
employ these rules incorrectly. That is why there is retraction.

The application of that rule is retracted then. All consequences of that
application are retracted as well. Given a premise set I' one likes to know
which of them may be abnormalities. Abnormalities here are, for instance,
formulas of the form @ A —@. Some premise sets might be such that we know:

(1) (AA-A)v(BA-B)

whereas neither disjunct is a consequence (so far). So maybe each of them
or either “A” or “B” behaves abnormally. The abnormalities form a set A.
“Dab(IT)” abbreviates the disjunction of (¢ A —@) for all ¢ € A. “Dab(I1)”
then expresses that at least one of the premises in A is abnormal. “Dab”
means “disjunction of abnormalities”. We are looking for minimal Dab-
formulas (since the less disjuncts a Dab-formula has the more premises we
have excluded as suspects). Besides the formulas appearing in a Dab-formula
there might be formulas which are already known as being abnormal.

In general: I' Fri(e v Dab(ID)) iff T' FyiL @

Here I contains the formulas on the consistency of which the application of
some rules used in deriving ¢ depends. One can follow the Minimal
Abnormality strategy, which with respect to (1), for example, assumes that
once we consider the one abnormal we can take the other as normal (i.e., we
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can derive more consequences, since less exceptions are now operative). If
at some later stage in a proof one can derive one of the disjuncts in (1) [in
general in: Dab(IT)], then (1) [or Dab(I1)] is no longer minimal. So this Dab-
formula is replaced by one stating that derived inconsistency. Retractions
based on the supposed inconsistency of one of the other disjuncts are taken
back then (by marking/unmarking lines in the proof, see below).

Proofs look like Natural Deduction Proofs with a further column:
n<k,.> A Rule, m,1 {B}

We number the lines and include in "< >" the premises a line depends on,
then follows the formula, then a column naming the rule applied to get this
line and the lines used in that application. The fifth column contains the set
of formulas (possibly empty) on the consistency of which the derivability of
the formula depends. These sets are called “conditions” (or
“presuppositions”, see below).

Conditions obey the following abstract rules:

(RU) Ifoi... on FriL W, then from @;... @, on the conditions IT; ... I,
derive y on the condition I'T, U ... U I1,.

The rule (RU) concerns rules of Natural Deduction which do not require in
LLL the consistency of the ingredient formulas. y just inherits the
conditional dependencies.

Rules requiring such consistency operate on

(RC) Ifoi... on FrLo(y v Dab(Ily), then from ;... @, on the
conditions IT; ... IT, derive y on the condition IT,, U IT, U ... IT,

In this case consistency assumptions for the formulas in I, are added. The
last line of a proof is the stage that the proof has arrived at. Now, if one of
the formulas in the condition gets to be known as non fulfilling the essential
criterion (here: consistency) the line is marked. The marking rule of the
Minimal Abnormality strategy says roughly: If for ¢ € I1;, ¢ occurs in some
Dab-formula, then line i is not marked because of that Dab-formula if there
is another disjunct of that Dab-formula which is taken as unreliable. Lines
that depend on a marked line have inherited the condition by either (RU) or
(RC) and are, therefore, marked as well. Depending on the strategy — or the
premise set — a line can get unmarked later, even in case of the reliabilist
strategy.

"< >" notes the assumptions a line depends on. We note the result of a
(vertical) derivation in a (horizontal) formula by putting the assumptions
mentioned in the dependency set of the last derived line on the left of "+".

1.<1> A PREM
2.<2> ADB PREM
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3.<1.2> B (oE) 1,2
that is A, AoB — B.
Instead of simply writing “(RU)”, “(RC)” the detailed rules are given here.

1.<1> —AAC PREM %

2.<2> BoA PREM &

3.<3> Dv—-C PREM %

4 <4> CoA PREM %

5.<5> Av—-C PREM &

6.<1> — A AE, 1 & (RU)

7.<1> C AE, 1 <& (RU)

8.<1,2> - B Contraposition, 6, 2 {A} (RC) marked at 10
9<1,3> D VE, 3,7 {C} (RC)ifmarked at 10 unmarked at 11

10<1,5> (= AAA)v(=CAC) Dilemma, AL 5,6,7 @ (RU)
11<14> —AAA oDE4,7 {C} (RC)

In line 10 we get to know that at least one of “C” and “A” 1s inconsistent, so
lines depending on them get marked. Given a Minimal Abnormality strategy
or seeing in line 11 that “A” is inconsistent we can blame “A” for line 10
and unmark the lines depending on the consistency of “C”. The Dab-formula
in 10 1s no longer minimal after 11.

Given the dynamic character of the proofs one has to distinguish: derivability
at some stage and final derivability. ¢ is finally derived at line i of a proof at
a stage s iff line i is unmarked at s, and whenever line i is marked in an
extension of the proof, then there is a further extension in which line i is not
marked. This property is (in most cases) not recursive. Even if final
derivability is not recursive this resembles our actual reasoning where we
(mostly) lack similar assurance against revision. There is nothing dynamic
about final derivability. The relative derivability statements (i.e. those
statements like

F((=AAC)A(BDA)A(DV—C)A(AVv—-C)) oD given {°C}

expressing that something is derivable from a (empty) set of premises on the
given set of presuppositions) are recursive enumerable. So one should not
exaggerate the failure of enumerability of theorems!

We built the system for adaptive paraconsistent set theory by using the
following ingredients:

e an adaptive version of standard propositional calculus;

e semantic and consistency operators
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e quantifier rules in the vain of Minimal Free Description Theory
(allowing for the use of descriptions, including those that are non-
referring);

¢ identity rules that restrict substitution to consistent objects;

e rules for a stronger conditional, whether we really need this or not;
e Dbasic rules for modalities;

e set theoretic rules/axioms.

Semantic and consistency operators express within the language some of the
semantic properties of sentences of the language.

A —A TA FA AA VA A oA
0 0 0 1

0 1
0,1 0,1 1 0 0

These operators express: true, false, true only, false only, non-contradictory,
contradictory.

We call the system resulting from these logical rules with added set
theoretical rules APS (Adaptive Paraconsistent Set Theory).

A line that reads
n<> A

contains a theorem, since the sentence “A” does not depend on any
assumption (the dependency set noted within “<>" is empty).

Theorems can be introduced into derivations at any time.

[Letters “n”, “m” etc. are used to refer to unspecified line numbers.
Remember: “A” is an abbreviation, the object language having really
sentences like “x€y”, “Ordinal(®)” etc.]

To include PC-tautologies, which we know already, we have the rule:
(PC) n<>A PC O

where “A” is any PC-theorem. The column with markings is empty.

For any other theorems (i.e. already proven APS-theorems) we have:
(TH) n<>A TH T

where “A” is any APS-theorem. I" contains the presuppositions. There
cannot be a list of marked individual constants in theorems.

To introduce assumptions into a derivation we have the rule:
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(AE) n<n> A AE  {sat(A)}
where we define satisfiability presuppositions by the schema
(sat) sat(A) = —=((AAAFA) v (VA ATA) v (*A A °A))

In case the presupposition later turns out to be violated lines depending on
the assumption in question have to be retracted (as always). The satisfiability
presupposition has to be made because the definition of APS-consequences
excludes the cases in which the premise set is unsatisfiable [see below].
Typically assumption in arguments need not be considered really true, but
satisfiable at least.

Conjunction Introduction has the form:

n.<m> A r
0.<k> B A
p<mk> AAB (ADn, o0 rvA

Conjunction Elimination has the two forms**:

n.<m> AAB I
0.<m> A (AE)n r
n.<m> AAB I
0.<m> B (AE) n r

Disjunction Introduction has the two forms:

n.<m> A r
0.<m> AVvB (VD n r
n.<m> A r
0.<m> BvA (VD n r

42 Here and in the following rules "<m>" refers to an unspecific (number) of

assumptions that the line depends on. I' can, of course, be empty; if there are marked
individual constants they are marked only in the line where the quantificational rule is
employed, see below.
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Disjunction Elimination has the form:

n.<m> AvB I
O.<k> —A A
p<mk> B (VE)noo T UAuU {°A}

This is the restricted form of Disjunctive Syllogism.
Negation Introduction has the form:

n.<n> A AE %
o.<mn> A .. r
p.<m> —A (=) n,0 r

If some assumption allows deriving its own negation, then this sentence can
be stated negated simpliciter (i.e. the status as assumption is discharged, as
indicated by the underlining in the line using (—I)). The usual form of
Negation Introduction leads to trivialization in inconsistent contexts, and
thus cannot be adopted here.

Negation Elimination has the form:

n.<m> ——A r
0.<m> A (—E)n r

Conditional Introduction (Conditionalization) has the form:
n.<n> A AE %

o<mn> B r
p.<m> ADB (=D n,0 r

This rule mirrors the Deduction Theorem. If the conditionalization is the last
step of a derivation the restrictions on not having marked individual
constants in it have to be kept.

Conditional Elimination (Modus Ponens) has the form:

n.<m> ADB r
0.<k> A A
p<mk> B @E)no T UAuU {°A}

This is the restricted form of Modus Ponens.

Truth Introduction/Elimination follow the disquotational (T)-schema.*
Strict Falsity will be a defined notion. The Inconsistency operator is treated
by rules as well.

43 One may doubt that the operator “T” thus can correspond to “is true” in a substantial

and especially in an (mildly) epistemic conception of truth, which does not validate ¢
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Truth Introduction has the form:

n.<m> A I
0.<m> TA (TD)n r

Truth Elimination 1s the converse:

n.<m> TA .. I
0.<m> A (TE)n r

Falsity Introduction has the form:

n.<m> —A ... I
0.<m> FA (FDn r

Falsity Elimination is the converse:

n.<m> FA .. I
0.<m> —-A (FE)n r

Inconsistency Introduction has the form:

n.<m> A A=A I
0.<m> ‘A (‘D n r

Inconsistency Elimination is the converse:

n.<m> *A I
0.<m> A A=A A =°A (.E) n I

For strict truth we introduce its version of Convention (T):
n.<> AA=A ) 9

Necessity Introduction (Necessitation) has the form:

n.<> A r
0.<> OA (OD)n r

A theorem (but not any sentence depending on further assumptions) can be
necessitated.

To. With respect to the evaluation of formula there is, however, this operator, and it serves
sometimes the function of “is true”.
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Necessity Elimination has the form:

n.<m> OA .. r
0.<m> A r

Since necessity is taken here to be semantic necessity (not natural necessity
or some more restricted version of necessity) it has to be governed in the way
of a normal modal logic of the strength of modal system S5. Therefore we
need two further rules:

The rule corresponding to the K-Axiom of modal logic has the form:

n.<m> OA>B) .. r
0.<k > OA>0OB (K)n,0 r

The rule corresponding to the S5-Axiom has the form:
n.<m> OA r
0.<m> OCA (S5)n r

Taking entailment to be semantic entailment in the sense that:
A3B£20A>B)
gives us derived introduction and elimination rules for “<”.

Entailment Introduction is a strict form of Conditionalization:

n.<n> A AE %)
0.<0> B AE %)
r.<n,0> C r

;.< > AAB=3C ('%I) n,0,r r

In strict conditionalization all assumptions have to be conditionalized (thus
we get a theorem to be necessitated to yield the entailment).

Entailment Elimination is a version of Modus Ponens:

n.<m> A=3C r
0.<k> A A
p<mk> C (—wE)no T UAuU {°A}

We introduce some further connectives by definitions. There are derivable
introduction and elimination rules then. Within a derivation we use the
definitions by referring to their name:

(D=) A=B2(A>B)A(B>2A)
(D=3) AS=SB2(A3B)A(B=3A)
(D) QA € -0-A

(DV) VA £ A=A

67



(D°) °A :=AA Vv VA

We have to give the usual requirements on marking individual terms in case
of applying Universal Generalization or Existential Specialization within a
derivation. These are:

e Terms generalized in Universal Generalization and specialized to in
Existential Specialization are marked at the right of such a line;

e The marking also notes the dependencies on other individual terms in
that line (in the form “a(e)”: “a” being marked depended on “¢”);

e Markings may not be circular (i.e. we do not have “a(e)” and “e(a)”);
e No term may be marked twice;

e Marked terms may neither occur in the premises, presuppositions nor
in the conclusion of a supposed valid derivation.

In applications of the quantifier rules one also has to meet the requirement
that by generalising one constant to a variable “x”, “x” will not be bound by
already present quantifiers. (V1) and (31) require further on that “x” and the

individual term occur at exactly the same places in a given sentence.

E!(4) says that the object denoted by a exists, “E!( )”, being the existence
predicate, is a logical constant. Quantifiers refer to existing objects only.**
We assume that there is something:

Axiom of Existence

n<> AX)E!(x) (E") %,
Identity Introduction is valid for any object, existing or not:
n<> a=a =) %,

Identity Elimination (i.e. substitution of identicals) is more critical. It has to
be restricted to avoid trivilization in a paraconsistent logic with as much

4 Semantically speaking the extension of “E!( )” is the domain at a world index. As

we are dealing with sets anyway worlds may be taken as sets containing set theoretically
modelled facts or states of affairs. Whether one admits possibilia or not is a question to
be discussed apart from set theoretical assumptions. [There are several techniques to
avoid a commitment to possibilia in one’s semantics. For the non-modal case one may
take the interpretation function / on terms to be partial: If 7 is defined for a, ||a/| is in the
domain, “E!(a)” 1s true, if / is not defined for a.. “E!(a)” is false; / interprets P(4) for any
general term and any singular as true, false or both; complex statements have their usual
recursive truth conditions (like in LP); variable assignments run over the domain, thus
providing the usual (paraconsistent) quantificational semantics, even if there are objects
without names; for any term a “o = o is true, if / is defined on both a and Yy, the usual
truth condition for “=""applies, otherwise a value may be assigned at random. In the modal
case modal expressions have their usual truth conditions (like in S5), possibilia can then
only be avoided by some construction of an ‘outer domain’ of terms and some ‘ersatzist’
construction involving instantiating terms. ]
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expressive power as APS. We have to presuppose that some object is not an
inconsistent object to apply (=E) to it. We define a consistency predicate “K(
)”” for objects (as a logical constant, of course) to do this:

(DK) K(3@) 2 —(3P)(P(a) A —P(a))

APS is no 2™ order system, but we may employ (DK) in that we note K(4)
in the presupposition list of some line if for the object named & we should
not have a line with an instance of the scheme: P(a) A —P(4). A line with
K(4) presupposed will be retracted once we derive P(4) A —P(4) for some
predicate.

Identity Elimination then takes the form:

n.<m> P(3) r
0.<k> a=¢ A
p.<mk>  P(¢é) (=E) n,0 ' Au {K()}

This restriction may block deriving theorems concerning inconsistent sets,
like the restriction on (DE) blocks theorems concerning contradictions.
Should we bother? We need not believe that inconsistent sets are like
consistent sets. After all the point of APS may be seen to rest in dealing with
lurking inconsistent sets in an attempt to have a most naive set theory for
consistent sets (i.e. one with unrestricted Comprehension and U). It is not
obvious that ZFC-like axioms should apply to inconsistent sets. It is not
obvious - in fact it may be doubted — that our concept set applies in full
generality to inconsistent sets. APS can handle inconsistent sets if there are
any. If it turned out that none can be shown to exist (by restrictions on proofs
like restricting detachment in Naive Comprehension to consistent set
defining formula) so the better, we may presume [see below on the Russell
Set]. The priority with APS lays on realizing a naive set theory for consistent
sets.

Since we want to use description and modal operators we have to provide
(=E) with a provisio in case descriptions are involved. In modal logic S5 all
modalities can be reduced to modalities of degree 1. We require as a provisio
for Identity Elimination:

In case we have 4 = ¢, then:

if 4 1s a description and € an individual constant, € cannot be substituted
into a modal context of “<”,

if 4 1s an individual constant and ¢ a description, € cannot be substituted
into a modal context of “00”.

The following quantifier rules require following the rules of marking the
constant generalized/specialized in (VI) and (3JE), and the renaming of
variables mentioned before.
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V-Introduction (Universal Generalization) has the form:

n.<m> R(4,¢) r
0.<m> (VX)R(x,6) (VD,n T U {El(d)} a(é)

Thus the application of (V1) requires an existence assumption concerning a,
since we conclude to a generalization about all existing objects. 4 is marked,
here as depending on é.

V-Elimination (Universal Instantiation) has the form:

n.<m> (Vx)P(x) ... r
0.<m> P(¢) (VE),n I'u {E!(¢&)}

Since the generalization is (maybe) true of existing objects only the
application of (VE) presupposes that the constant specialized to names an
existing object.

J-Introduction (Existential Generalization) has the form:

n.<m> P(4) r
0.<m> @Fx)P(x) (@AD,n I' U {E!(4)}

Thus the application of (3I) requires an existence assumption concerning 4,
since we conclude to a generalization about some existing objects.

J-Elimination (Existential Instantiation) has the form:

n.<m> (AX)R(x,8) ... r
0.<m> R(¢,4) (FE),n I"u {E!(é)} é()

Since the generalization is (maybe) true of existing objects only the
application of (FE) presupposes that the constant specialized to names an
existing object. The name of the object is marked in its dependencies in the
formula in question.

In case that existence assumptions are explicitly made the existence
presupposition can be cancelled:

n.<m> P(4) ' U {El(a)}
0.<0> E!(a) AE
g.<m,0>  P(3) (E'C)n,o T

If the existence claim follows from the other assumptions the presupposition
can be cancelled as well:

n.<m> P(4) I'u {E!(a)}
0.<m> E!(a) I'u {E!(a)}
q.<m> P(3d) (E!C),no T’
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Minimal Free Description Theory requires the uniqueness of a description
with respect to the existing objects only. Otherwise it looks like the standard
Russellian account of descriptions. We use the usual “1”-notation, so that
“ixF(x)” means “the (unique) F”.

The (MFD)-rule can be stated as the following two ways of term
interchangability:

n.<m> xP(x)=4a r

0.<m> (Vy) &=y =P(y) A (V2)(P(z) D z=y) (MFD),n T
n.<m> (Vy)(@=y = P(y) A (VZ2)(P(z) D z=y) ... r
0.<m> xP(x)=4a (MFD)n T

The first conjunct in the equivalence states satisfaction of the defining
property, the second expresses uniqueness.

In the context of quantificational rules we can now make clear the reference
to a set of presuppositions above. Adaptive Logics speak of Dab-formula
and corresponding sets of consistency assumptions. APS notes these
consistency assumptions as presuppositions to employ some restricted rules.
Actually the consistency presupposition is "°A". In Minimal Free
Description Theory usually a conjunct "E!(a)" is needed (e.g. as derivable
line or assumption) to employ one of the quantifier rules. Since APS is a
dynamic logic already we need not work with "E!(a)" as a line in a derivation,
but can note this also as a presupposition in the presupposition set I noted
on the right. In case of Identity Elimination the presupposition is that we
have a consistent object. We note this as the presupposition “K(a)” for an
object a in question. Each of the sentences in the presupposition set has a
negation. Once the negation of such a presupposition can be derived, all lines
are retracted which depend on that presupposition (like in the original
adaptive dynamics). The retraction thus does not only concern the
disappointment of consistency assumptions (either for a sentence or an
object), but also the disappointment of existence presuppositions. If the last
line ¢ of a derivation has a non-empty presupposition set I', this means that
the sentence in that line is derivable from the assumptions noted within “<
>” given these further presuppositions.

Let @ be the (possibly empty) set of assumptions and I the (possibly empty)
set of presuppositions in a derivation of .

We have:
—|(E|\|!€F) CD|_APS -y = CD|_APS ()
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To save labour and have derivation looking more closely like standard
derivations we adopt the convention to drop noting I" if T is empty.*®

The relative derivability statements, 1.e. those statements like
FapsG(1xF(x)) D (a = 1xF(x) © G(a)) given {K(a)}

expressing that something is derivable from a (empty) set of premises on the
given set of presuppositions, are recursive enumerable. Noting
presuppositions explicitly clutters derivability statements, one may
complain. This is due, however, on the universal employability of APS.
Standard logics have all these caveats implicitly understood as they
presuppose a well-behaved restricted area of applications.

Consequence in APS may be defined:

(|: 1) I' Eaps 0] iff
in case that all y eI are true at least, then ¢ is true at least.

Nothing needs to be said concerning the case that any y eI is false only. One
has not to hold that then a consequence relationship holds. To do so would
endorse non-relevant inferences.

To do so may come close to reintroducing ex contradictione quodlibet, as
well. AA and VA are incompatible, so both can never be true at the same
time, so allowing for Irrelevant consequences would yield, for example:

(*2) VA, TA Eaps C
for any C.

To insist that the “in case” has to be read as material implication as in PC
just begs the questions against a relevant meta-theory!

An improved relevant definition of consequence in APS might be:

(F2)  T'E=aps @ iff there are models such that all yel are true at
least, and in case that all eI are true at least in a model, then ¢ is true
at least in that model.

The existence condition rules out the Irrelevant cases and (*2).
A consequence relation obtains if and only if all of the non-empty set of
models that make the premises at least true make the consequence at least
true. What models are has to be explained in our universal system APS itself.
As always E concerns the inheritance of truth. The second version, (&),
requires some reworking of the proof theory.

4 It may also be convenient to leave most presuppositions, especially satisfiability

presuppositions, as being understood and return to them only in case of cancellation of
lines. For the sake of getting to see all the presuppositions or to accustom to the adaptive
procedures it may be useful to write them down for a while.
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Changing the definition of consequence this way requires a further book
keeping of presuppositions, in this case with respect to assumptions.

In as much as APS has to be correct the basic rules must not support
consequence claims that go against the definition above. Making an
unsatisfiable assumption, however, would allow claims like

(*3) VA ATA Eaps VA A TA
(*4) VA A TA Eaps VA

where the premise (set) is unsatisfiable and thus the claims are supposedly
incorrect. If we consider these claims as incorrect — and not just non-relevant
— then the first definition of consequence is in trouble, since conjunction
elimination would allow to derive (*4). The proof theory allows to derive
something that is not — strictly speaking — a violation of the definition of
consequence given thus, but only because we deem it non-relevant (the case
of the assumption on the left being at least true just does not arise, thus it
cannot violate the condition). This line of reasoning, however, leads to
accepting (*2) as not incorrect! And this may be too much, even if (*2) is
not accepted as valid. Still the first definition may be an option given a clear
understanding of RELEVANCE. Being silent on (*2) as neither correct not
incorrect, however, violates the otherwise assumed tertium non datur, and
the meta-theory should not work with another logic than the logic, since a
truly universal logic can be used as its own meta-logic.

Clearly, however, the solution for this first option’s trouble is straight
forward, given the second definition: assumptions (i.e. claims to be
considered for further consequences) are presupposed not to be true, but to
be satisfiable. In a paraconsistent semantics even contradictions @ A —¢ can
be satisfiable.

When applying the assumption rule (AE) we have to use the form

n.<n> A AE sat({A})
where we define the satisfiability presuppositions by the schema
(sat) sat(I') =TI has a APS-model where all oI are true at least

I' being a set of assumptions. The set of assumptions I" has to be jointly
satisfiable. With sat({A}) we note only the satisfiability of an individual
assumption. If a line depends on several assumptions, the further
assumptions entering into its derivation also have to enter the set the
satisfiability of which is presupposed. The presupposition of satisfiability is
cancelled when I" contains or entails for some A either

i) TAAVAor
(i) VA AAAor
(i11)) AA AFAor
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(iv) (oA A °A)

These sentences are beyond contradictions like @A —=¢ in not being
satisfiable even in a paraconsistent semantics for APS.

In case the presupposition later turns out to be violated lines depending on
the assumption in question have to be retracted (as always). In a universal
logic like APS were the distinction between object and meta-language is
superseded by the idea of semantic closure we naturally have semantic
properties (like satisfiability) enter into the syntactic properties of a
derivation.

Since we generally have to presuppose the satisfiability of the set of
assumptions which a line depends on, we may use the convention of not
especially noting this in ordinary cases, but proceed according to a revision
rule that all lines depending on an assumption that turned out to be
unsatisfiable have to be taken back. In fact the additional entry “sat(A)” for
some premise “A” 1s redundant in our derivations as we note the
dependencies in the second column. We just have to recognize that all
premises mentioned in the second column have to be satisfiable. This is
different with the other presuppositions, as, for instance, not a/l premises
have to be consistent.

The relative derivability statements with respect to logical consequence (i.e.
derivability from a set of assumptions) now carry the presupposition that the
assumptions/premises are satisfiable (in the defined sense above):

AABFars A given sat{(A A B)}

expressing that something is derivable from a satisfiable set of premises. So
in the next few examples the “sat” is used, but it can be dropped for more
convenient representation. More generally one could say that in a claim like
@A YHaps @ it 1s meant that in case of @ Ay being satisfiable ¢ 1s derivable.
Here @ Aykaps @ 1s a general schema, but one need not be committed to
every instance of @ Ay providing a true statement of derivability ¢ Ay aps
¢ as in case of (*4).

Examples of APS-derivations:

1.<1>  G(xF(x)) AE  {sat(G(«xF(x)))}
2.<2> a = 1xF(x) AE {sat(a = wxF(®x))}
3.<1,2> G(a) (=E) {K(a),sat(1),sat(2) }
4<1> a=wuxF(x)>G(a) =D)2,3 {K(a),sat(1)}

5> G(xF(x)) o (a = xF(x) o G(a)) =h14 {K(a)}
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1.<1> a=wxF({Xx) AE {sat(1)}
2<1> (Vy)a=y=F(y) A (Vz)(F(z) o z=y) MFD,1 {sat(1)}

3<1> a=a=F(a) A (Vz)(F(z) D z=a) (VE)2 {E!(a),sat(1)}
4.<> a=a =D %)

5<1> F(a) A (Vz)(F(z) D z=a) (oE)3.4 {E!(a),°(a=a),sat(1)}
6.<1>  F(a) (AE)5 {E!(a),°(a=a),sat(1)}
7<1>  (Ix)F(x) (FE)6 {E!(a),°(a=a),sat(1)}
8.<> a = xF(x) D (Ix)F(x) (oE)1,7 {El(a),°(a=a)}
1<I> A AE {sat(1)}

2.<> AD—-—-A PC @

3<1> —-A (oE)1,2 {°A,sat(1)}

4<4> —-AvVvB AE {sat(4)}

5<14> B (VE)3,4 {°A,° — —A sat(1),sat(4)}

6.<4> A>DB (>DL,5 {°A,° = —A,sat(4)}

7.<> (—-AvB)>(A>B) (2D)2,6 {°A,° = —A}

2.<> =[O <>—|A D —|<>—|A (PC)(DE)l {O(Q_lA D D<>—|A)}
3.<> OOA D OA (D)2 {°(0=A > 0O0-A)}
4.<> OA > OOA (TH) %,

5.<> OA > OOA (oE)(2D)3,4 {?OA°(®C—-ADOC—A)}
6.<6> OA AE {sat(6)}

7<6> A (OE)6 {sat(6)}

8<6> AvB (VI)7 {sat(6)}

9.<> OA>AvVvB (=D)6,8 %,

10<> O(OA>AvVvB) (aon9 %,

11.<> OOAD>OAVB) (K)10 %,

12.<> OAD>DOAVB) (®E)(=]) 5,11{°0A,°(0=ADO0-A)}

We add to the constants of our language the expression “Set( )” with its
obvious intended meaning, as well as the usual set theoretical symbols like
curly brackets, “€”, “c” etc. and *“|” to express set abstracts like {x | P(x)}.
Set abstracts are ferms in the language.

We have to add the usual definitions like:
(D=2) acb¥ Set(a)ASet(b)A(VxXx)(xea D xeb)
(D<>) <a,b>Z {{a},{a,b}}

Thus “€” 1s taken as primitive.
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As APS deals not only with sets, but also ordinary objects, we need a set
predicate “Set( )” to sort out the empty cases when using set principles with
non-sets. Since in the intended interpretation x € y will be false if y is not a
set, we have to avoid all the counterintuitive consequences of irrelevant
conditionals (e.g., (VX,y)(xea = yeb) is true for any individuals a and b
without these being identical).

We use an introduction rule for some of these cases:
n.<o> a={x|PXx)} r
m.<o> Set(A)A(VX)(P(x) = x€4) (Set),n r
We define the universal set U, as we have done here all the time:
(DU) U< {x|x=x}

Since we cannot exclude inconsistent objects like a with a # a, it is no option
to define J as {x | x # x}!

A better idea is:
(DY) De{x|x ¢ U}

Thus U is truly universal.

Extensionality of sets can be added as a rule to introduce identity of sets.

n.<k> Set(a) A Set(b) A (Vx,y)(xea=yeb) ... r
m.<k> a=b (Ext),n r

Substitution doing the rest for consistent sets, since both sides of "e" are
open for substitution.

Naive Comprehension is added as rule/axiom schema using the material
conditional:
n<> (3y)Sety) A (Vx)(xey=P(x)))  (NC) @

with no further restrictions. (NC) immediately gives us the existence of &
and U. With (NC), (D<) and (Ext) we get:

e unordered pairs {x,y} by vEW = v=x V v=y

e ordered pairs, then abbreviated as <x,y>
e singletons, {x} = {y |y =X}
and so forth. Also by (SET) we immediately have: x& {y| y = x} = {x}.

Given the restrictions on detachment in APS, however, may forbid or retract
the application of detachment here. Consider, for example, the inconsistent
object a with a # a. We have
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lL<>aelU=a=a (NC), (DU), (VE) &
2<>aelU (=E), (=D, 1 {°a=a}
3.<3>a=a AE %)
4<3>az#ana=a (AE), 5]),3 &

Now, given (4) “a = a” obviously isn't consistent, so (2) has to be retracted!
That, of course, does not mean that a ¢ U.

For the Russell Set we have by (NC): (dy)(Set(y)A(VX)(xXEy = x¢X));
naming the set {x| xg¢x} “R” we get by Set “Set(R)” and then by (NC) and
(dE): (Vx)(xER =x¢x). So by (VE): RER = RgR. We cannot get “RER
A RgR”, however, as (DE) requires a consistent antecedent and “R&R”
turns out to be inconsistent. So we have introduced the set {x| x¢x} but have
not derived the contradiction showing it to be inconsistent. This may be a
case of incompleteness for APS: We cannot show all the properties of
inconsistent sets. On the other hand — why should we bother? Only if we
assume R to exist as inconsistent set, can we declare APS incomplete,
supposing, of course, there being no other proof of “RER A RgR”. The
issue here concerns only those interested in knowing the structure of
inconsistent objects, as some dialetheist might be. They had to come up with
a better system which does what APS does for consistent sets, but can also
additionally treat more completely of inconsistent sets. Dealing with
universality APS suffices.

We may allow shorthand expressions for functions: f, f’... As we can say:

(Df) Function(f) £ Set(f) A (Vy)yefO@Av,w)(y=<v,w>)) A
(Vy)yEf Ay ESf A (v,w,wW)y=<V,Ww>Ay’'=<v,w’>) D
y=y’)

We define an injective function by:

(DInjective) Injective(f) £ (Ix,y)(Set(x)ASet(y)A (Vu,u’,v)(uex A
wvex Avey A<uv>ef A<u,v>Ef Du=u’)

Powerset is defined in the usual way by:
Dp)  p@={x|xca)
And by (NC) we get for some set w:
(Fy)(Set(y) A (VX)(xEy =x = W)
Generalizing on w provides the Powerset Axiom.
We can define cardinality comparison |a| < |b| now by
(D) la| < bl £ (f)(Vx€a)(Tyeb)(f(x)=b A Injective(f))

“>” for cardinalities has then the obvious definition:
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(D>) [a > |b] £ —[a] < |b]

We reason now:

lL<> pU)={x[xcU} (D ¢),(NC)

2.<> Set(p(U)) A o (U)cU (Set),(DU),(Do), 1

3.<> Injective({<x,y>| x =y}) (DInjective),(Ext),(NC)

4.<> (ANVxe pU)(FycU)(f(x)=y A Injective(f)) (1),(Dc),2,3
5.<> |p )| <[U] (D<),4

6.<> (Ax)(Set(x) A || <[x))  (3D),(Set),5
7.<> (Ix)(Set(x) A 7[p)]>[x]) (D>),6
8.<> —(Vx) (Set(x) D [pX)|>x)) (VI),7

where the last line, (TP1), is the negation of Cantor’s Theorem. The usual
indirect proof of Cantor’s Theorem does not work in APS (like in many if
not all paraconsistent logics). If there was another proof Cantor’s
Theorem would come out as an antinomy!

We can continue and observe: for a set x there exists by (NC) f:x— 0 (x)
defined as {z | (dyex)z = <y,{y}>}, the singleton map of the set x. By
reasoning like the proof just considered we can arrive at:

10<>  |UIZ|pU)
(5) and (10) combined with the Cantor-Bernstein Theorem
(CBT) la] <[b] A [b] <fa] > [a] = |b]
prove
1.<> Ul =g U) (AD,(DE),5,10,(CBT)  {*((5)A(10))}
which contrasts nicely with NF/U.4
Because the singleton map exists, we can prove:
(TP2) (VX)X < |1

And since D€ p(x) for any set x, @1(x) < g (x) for any set x, so for finite
sets we have:

(TP3) (VX)([x] < Ro D x| <[ 0 (x)])

Without Cantor’s Theorem to generate higher cardinalities the APS-universe
might be rather flat than \/-shaped.

APS contains non-referring singular terms, using a name does not imply that
the named object does exist. Singular terms naming sets — including set

4 The Cantor-Bernstein Theorem can be proven directly, so the standard proofs are

available in APS.
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abstracts! — thus need not refer by just being singular terms. In principle there
would therefore be the option for non-existent sets being around. These may
one remind of Quine's ‘virtual sets’ [cf. Chap. III]. Virtual sets, with Quine,
are set abstracts which are not quantified over, thus not being said to exist.
APS could provide a place for such virtualities.

On the other hand (NC) just declares that any set whatsoever (i.e. any set
defined by a set abstract) exists.

One may consider whether the introduction of a second set of quantifiers
(quantifying over possibilia or virtualities as well) might be useful, using a
quantifier with no existential impact in (NC). Apart from the problems of an
ontology of virtualities this seems, to me, to be against the spirit of Naive
Comprehension, the very point of which seems to be that there (really) is a
set to each defining condition.

Unrestricted (NC) gives us
Fy(VX)(EY=x=y)
1.e. asety = {y}. y is its own singleton, thus finite. We have:
(T) There are finite self-membered sets.

This supposedly obvious observation is interesting as is has been conjectured
for NF that any self-membered set in NF has to be infinite.

All the ordinals are members of
Q = {x | x 1s the order-type of a well-ordered set}

Where, as usual, {<x,R> | <x,R> is isomorphic to <y,R’>} = o is the order-
type of <y,R’> with <y,R’> being the set y with R* well-ordering y. € is not
just self-membered, but contains all its own ordinal successors! (2 contains
all well-orderings, and for all (infinite, pure) sets there is a well-ordering in
Q as (NC) provides for each (infinite, pure) set a choice function, which can
be employed to order the set. Finite sets can be well-ordered any way by
counting. Uncountable infinite sets with urelements (i.e. non-sets) may be
well-ordered by first ordering the finitely many urelements and then well-
ordering the rest of the set.

All in APS seems to be a most comprehensive system for paraconsistent
reasoning including reasoning about sets, recapturing standard theorems for
consistent contexts and entities.*’

47 (Dunn 1988) showed a somewhat disturbing result for non-classical logic and thus

for non-classical set theory: If one combines a couple of basic and innocent principles for
the classical connectives and for the consequence relation (like transitivity) with second
order quantification and conversion principles (for a A-calculus like abstraction) then the
resulting logic (i.e. the set of theorems generated) is an extension of (standard) SOL. This
means that the full strength — and paradox yielding power — of classical reasoning
(including Disjunctive Syllogism ...) is regained. The systems by Routley and Brady
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Paraconsistent set theory is not only of interest in itself or as formalization
of naive set theory. It also may serve as the foundation of paraconsistent
arithmetic. It has to be checked what remains of standard mathematics once
its foundations in set theory have been restricted to paraconsistent set
theories!

Do we need paraconsistency for set theory?

If the justification for a paraconsistent set theory depends on avoiding the
antinomies, others approaches that avoid the antinomies might be
alternatives. Provided they are more natural or coherent that the
paraconsistent systems.

If the justification depends on the argument that the notion of set is not clear
unless we have a universal set, set theories that combine standard logic with
having a universal set might be alternatives. Again, provided they are more
natural or coherent that the paraconsistent systems.

An even more decisive point may be keeping unrestricted (Naive)
Comprehension. That is something that neither ZFC nor systems like NF
can do. Paraconsistent set theories help Logicism to a second chance. Russell
and others worried — inter alia — that the Axiom of Infinity does not sound
like a logical principle, but boldly asserts the existence of specific sets. One
we have (NC) we get U and J, and we can comprehend specific sets as
subsets of U. There are infinite sets (in Dedekind’s classical definition) as U
can be mapped to the singleton image of its elements, thus is (Dedekind)
infinite.

Neither does everyone like the distinction between classes and sets. A theory
not making this difference might be preferred.

outlined in the preceding paragraphs and versions of set theory framed in first order LP
or APS are — as first order systems — not fulfilling the antecedents of Dunn’s theorems.
For a first order system supposed to be universal (i.e. modelling its own semantics)
questions as to ambiguity arise. Can unintended models be excluded? In a standard setting
distinguishing object- and meta-language non-intended models are constructed by
keeping the intended meaning of all the machinery needed to construct the non-intended
model in the meta-language. After dropping the distinction between object- and meta-
language re-interpretation tends towards global scepticism with respect to meaning.
Should we care about global scepticism of this sort?
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An ontology of inconsistent objects is — in my eyes — the greatest challenge
of/to paraconsistent mathematics and set theory.

Given the strong paraconsistent program of true contradictions and a even
mildly realistic theory of truth (containing in some — maybe even restricted
— fashion the idea of correspondence), a true contradiction is supposedly
made true by either an inconsistent fact (taking facts — at least for the moment
— to be truth makers of statements) or by inconsistent objects. Like true
contradictions they are just there.

Mathematics has traditionally been the hallmark of a science that proceeds
by proof, and so is free of falsehoods and more so of inconsistency. Changing
the basic logic used in mathematics to a paraconsistent logic makes
mathematics in a weak sense paraconsistent: If there were to turn up some
inconsistency in mathematics, it would not explode. But since there are no
inconsistencies expected to arise there, a mathematician will not be inclined
to forego the deductive power of FOL.

Changing set theory to a paraconsistent set theory makes mathematics
paraconsistent in a stronger sense, since now the basic axioms are taken as
the inconsistent axioms of naive set theory. There are now real
inconsistencies — may be even inconsistent objects — in mathematics and the
logic, therefore, has to be a paraconsistent one.

And the inconsistency may not only reside with some elusive set theoretic
entities, but there may be inconsistent numbers as well!

To have an inconsistent number theory means at least that within the
theorems of number theory there is some sentence ¢ with ¢ being a theorem
and —@ being a theorem at the same time. Supposedly this corresponds to at
least some object/number a being an inconsistent object. Therefore
inconsistent mathematics is connected to inconsistent ontology. Its
underlying logic has to be paraconsistent.

The problems with having “F(a)” and “—F(a)” for some object a seem not so
pressing if a is some mathematical object than a being a physical object:
Mathematical objects are either non-existent — mere theory, taken
instrumentally — or they are in some elusive Platonic realm where strange
things may well happen. If on the other hand one is a reductionist realist
about mathematics (mathematics being about structures of reality or
mathematical entities rather being concrete entities dealt with by mereology)
then inconsistent mathematics is as problematic as your cat being (wholly)
black and not being (wholly) black at the same time.

The challenge may not be that great for Naive Semantics given some mildly
anti-realistic theory of truth (containing in some — maybe even restricted —
fashion the idea that truth depends on justification), and observing that the
inconsistent objects in that area are sentences only. The real problem are
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objects like the Russell set or the least inconsistent number. Isn't that too
much to bear, even for a dialetheist?

As arealist — even if you do not adhere to naive realism or extreme versions
of metaphysical realism — you adhere to some principle that there correspond
structured entities (facts or objects with properties) to true statements. The
entities are — at least as much as our linguistic resources to describe them are
partly sufficient — as the true statements say they are. This means that a truth
like “F(a) A —F(a)” means at first sight that the object a has property F' and
does not have property F. On second sight one will have work with the idea
of an extension of “F( )’ and an anti-extension of “F()”, the extension being
the set of entities fulfilling the criteria of F-ness, and thus being F; and the
anti-extension being the set of entities fulfilling criteria of not being F, thus
being not-F.

For an anti-realist this may solve the problem of inconsistent objects, since
being an inconsistent objects means nothing more for an anti-realist than that
the objects fulfils inconsistent criteria. There is no claim on the anti-realist's
side that there corresponds something to this in reality.

The anti-realist can even explain how this may happen in case of ordinary
objects: If predicates are employed to more or the less vague criteria or
family resemblances to some prototype it may happen that one route of
resemblance leads from the prototype of F' to a, and another route leads via
some intermediaries from a to a prototype of non-F. In the manner of weak
paraconsistency one may argue that we have to be able to model theories that
depict — at least implicitly — the world as containing inconsistent objects,
without ourselves to be committed to this picture. We need the formal tools
(like APS) for this, but these tools themselves have no negative ontological
impact. That is just like we need a logic to draw inferences in works of fiction
(or about art) where some works are essentially inconsistent with respect to
some object (e.g., some stories about time travelling or drawings by M. C.
Escher).

A realist cannot take this easy way out. For (most) realists properties are
structures of objects — or parts or tropes... — and either you have them or not.

In case of sentences —1.e. for a dialetheist view on naive semantics — the way
out may be that a sentence is really an object that can have inconsistent
properties without us having ontological scruples: A sentence being a
dialetheia means that it and its negation are provable. These are clear cut
properties. The content of the semantic antinomies, once again, concerns
facts about language. Given our mild form of realism that incorporates some
idea that truth i1s also — besides aiming at correspondence — tied to
justification we can accept inconsistent objects here, since this ‘merely’
points to the inconsistent nature of our linguistic access to reality. That is a
deep philosophical point — as dialetheism is — but it locates the inconsistent
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objects somewhere in the objects having the job of mediating between our
mind and the rest of reality, these objects often being constituted by linguistic
conventions.

Dialetheism in semantics needs no special ontology of inconsistent objects
if the inconsistencies are located within our linguistic frameworks. That a
sentence can be shown to be true and can be shown to be not true points to
the fact of inconsistent evaluations or derivations, but to no deep ontological
mystery.

The problem of inconsistent objects is much harder with respect to ordinary
objects. If properties are structures of objects, and this means in the last
analysis structures of distribution of matter and energy, then an inconsistent
objects cannot exist, it seems, since either at some location there is matter or
not.

Inconsistent theories in the sciences can be understood in the sense of weak
paraconsistency, i.e. they may be modelled by APS-style quantificational
semantics with inconsistent objects, but one need not believe that there really
are these objects.

You really need an ontology of inconsistent objects if you are a mathematical
realist and your favourite mathematics is inconsistent, or if you are a
dialetheist in a set theory, again taken realistically.

For a dialetheist the problem is naive set theory, given one is a realist about
sets. A set, it seems, either is a member of another set or it is not, otherwise
the including set could not be well-defined.

Apart from its ontology paraconsistent set theories are certainly different
with respect to the theorems holding in them. One cannot expect that
theorems of ZFC carry over, as many of them are proven by means — like
indirect proofs — which are not valid in the paraconsistent theories.

One critical instance may be Cantor’s Theorem. The usual indirect proof
proceeds by arriving at the contradiction of the element x; being and not being
an element of the set of the set of the x €y not being an element of the subset
they are coordinated to by the supposed bijection f between a set y and 0 (y),
Le. f(x)={x€y | x ¢ f(x)}. A dialetheist may simply embrace the
contradiction.*®

48 Even proofs like (Raja 2005) which do not use the diagonalization proceed by
reduction, an inference not available in full generality in paraconsistent systems.
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Non-existence claims which rest on Cantor’s Theorem can be rejected by
paraconsistent set theories. The set of all truths exists: the usual argument for
its non-existence does no longer go through (that for any sentence o and any
subset x of truths the cardinality of questions a€x exceeds the supposed
cardinality of the set of truths; cf. Grim 1991, pp.91-93).

If there was no proof of Cantor’s Theorem one may well have @ (U) < U
without further contradiction. The absence of Cantor’s Theorem,
additionally, may wreck also the move to higher infinite cardinalities. Thus
the universe U of such a paraconsistent set theory may not resemble V.

In the extreme case — ‘extreme’ for the common view, of course — we are
driven from ‘Cantor’s Paradise’: there is exactly one infinite cardinality:
infinity. One may embrace this actual infinity and stick to the pre-Cantorian
intuition that there come no larger collections than the (simple) infinite ones
(i.e. those having this one cardinality ).

(NC) and a condition ¢ similar to the Axiom of Infinity (also mentioning the
comprehending set y):

Xx=Q V (dz€y)(x=2z U {z})

open in “x”, allow for an infinite set: = ensures JE€y, enforcing 1€y by
the second disjunct, and so forth. The finite ordinals exist by their instances
of (NC), where the defining condition y may simply list their finitely many
members (e.g. x€E3=x=0 V x={D} V x={J,{D}}). The infinite set ®
collects them.

If there is no infinity beyond the countable (and thus no properties beyond
those which are expressible by the formulas of our set theoretic language)
one may use set abstraction to define “&€” by the schematic

(D€E2) XE€yz y={x|eX)} A o)
“&” thus no longer being the primitive expression introducing set theory;
“c” being defined in the usual way.

In this way a variant of the Axiom of Constructability, V = L, may return,
namely:

(Constructability) U=L

If for all sets there is some defining formula ¢ the last argument in favour of
a distinction between two types of collections, the one defined by a uniting
‘rule’ and the other merely by its elements (one understanding of the
distinction between ‘classes’ and sets) loses its force. Note again that the
arguments against Constructability stemming from the naturalness of the
concept of POWERSET and set theoretic realism also have no force in the
absence of Cantor’s Theorem. All subsets can be there and be expressible.
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At the end of chapter I we outlined an approach claiming V to be an entity
sui generis. We may use the special character of V to account for the viability
of ZFC then. If one does not support such an understanding of V one needs
some other (stronger) formal system as meta-theory of ZFC. So even if set
theory is our strongest formal system in applied science, we have to ask
where we are when we talk about i and V. The main advantage of a
paraconsistent approach can be seen in its incorporation of meta-theory into
the most comprehensive formal system. A paraconsistent set theory has to
have a paraconsistent meta-theory, since otherwise it has to use some theory
like ZFC again, inheriting all the conundrums the paraconsistent theory was
set out to solve. The meta-theory cannot be consistent as it treats of the
universe (i.e. treats of an inconsistent object), which can only be reasoned
about using (restricted) paraconsistent inference rules. A paraconsistent set
theory has a model <U,I> U being the domain, I the interpretation function.
Their ordered pair is a set, as U can occur in itself and other sets, and so is
treated within the very same theory again. And it may be another inconsistent
object.*

Given the difficulties in understanding an incomplete universe and the
fundamental role of a Domain Principle, why don’t we just talk about V
without assuming it to be the value of a bound variable? This appears
reasonable as doing otherwise land us in an incomprehensible framework of
indefinite existents.

Assume we do not give up on the infinite, whether we are Platonists or
fictionalists or whatever else. There are then infinite collections. Comprising
within them al/ of a kind not collectable itemwise by finite beings. We collect
them using our concept COLLECTING. If we talk about the F's we naturally
assume that there is a collection F where they are in. Cantor’s Domain
Principle expresses this idea that the F's we quantify over or talk about can
be collected into a totality. Sometimes the totality has to be of another type
to avoid antinomies (e.g. in the set/class-distinction). As there seems to be

49 If standard logic and set theory are employed in the meta-theory one can use classical
meta-theorems to outline (term) models of some paraconsistent set theories (cf. Libert
2003, 2005 and reference therein). This is neither an option in our discussion about U,
where pushing the issue in the meta-language does not help, nor in the wider dialetheist
perspective, where, for instance, the conditional and identity rules employed by Libert
would lead into serious trouble (cf. Bremer 2005, pp.185-98).
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no limit to this procedure we always progress to a wider domain.>® The
Domain Principle thus enforces the idea of the incomplete universe. A
domain is added to the objects, giving a larger domain, which is added to the
objects — and so on.

Unless, that 1s, we meet a fixed point in this progression. Informally, the
totality of things to be thought of or to be talked of can be thought or talked
of: it belongs to the very domain it defines. Thinking of ‘the domain x is in’
applied to it leaves us at it. Thus it may be called a fixed point of the Domain
Principle.

Is U of this type? Having U€U requires several other adjustments in set
theory. And they do not come cheaply — up to inconsistency.

As intuitive as the Domain Principle may occur to us, leading us up the
ladder of the indefinite may be too much, as we have seen above. We might
accept that the whole construction has a limit: a collection beyond further
collecting. There lays the naturalness of Limitations of Size: There is one
size too big to be collected into a set. This collection better not be the set U
to avoid severe complications in set theory, otherwise rather intuitive. So one
may see the idea behind Limitations of Size without endorsing NBG or MK,
or any other set/class-theory. Nothing is gained by having (several) classes.
With a collection of classes the question of their collectability immediately
arises.

The single limit object V might be different.

If that limit object V exists — neither a set, nor an extended set like an
inaccessible cardinal, nor a class — ZFC is consistent. And if our intuitive
notion of set rather endorses the General Continuum Hypothesis we add it as
well: ZFGCH is consistent, if V exists. Our notion of set suits V, and vice
versa.

This conception of V as collecting all the sets but being a special limit object
may correspond better to our concept SET than taking set theory just as the
realm up to the first strongly inaccessible cardinal. [The Cantor quote setting
the theme of this book may illustrate this perspective.] Someone might argue
that our concept SET takes us thus far, but that there are other mathematical
objects and theories (especially those of large cardinals, measures etc.),
which pick up the baton where ZFC hands it over. Although this sounds like
a nice division of labour, the large cardinals are too set-like to provide a
natural boundary to our concept SET, supposing it to fit to ZFC in the first
place. V is a stop point, the first inaccessible cardinal is not. And large

50 Recently Rayo and Williamson (2003) and others have argued for ‘unrestricted First-

Order languages’, i.e. for quantification without a domain. The formal proposal, however,
must employ SOL and a richer meta-language for which similar problems arise. One may
also consider the employed SOL as critical and problematic (cf. Weir 2006). Unrestricted
quantification is only unrestricted beyond an object/meta-language distinction.
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cardinals — again — give rise to the question where their hierarchy is collected
in, inviting and requiring V or some V’, landing us again in an incomplete
universe. V is not an incomplete universe at all: although we cannot walk,
count or ‘powerset’ us up to it, V contains all sets; they are not in the making,
there are no processes of indefinite extension going on. In this respect V as
an object at the limits of thoughts differs from the row of experiences
discussed by Kant in the Critique of Pure Reason: Kant traces the antinomies
to their common error of taking the series of experiences, which is only given
piecemeal and prospectively (‘aufgegeben’) as a ‘given’ totality. As
experiences are obviously under temporal construction their series can never
be united — by whom? In an experience? Sets, in contrast, are not
(temporally) constructed and thus should be collectible in a unity. Thus far
we are carried by the Domain Principle. At that /imit we ‘simply’ have V as
an object, and stop adding it to a domain.

Our concept of SET may force stronger set theoretic axioms on us. This
shows, however, not the incompleteness or growing extension of V, but the
incompleteness of a theory like ZFC. Urelements and & have no members,
but are members; sets have and are members; V has members, but is not a
member: it occupies a slot in conceptual space.’!

We may say: our idea of V is an idea contained and connected to our concept
SET. The special nature of V is forced upon us by the unfeasibility of the idea
of an incomplete or thought independent but growing set theoretic universe.
We know of V by the picture we have of the iterative hierarchy and the
structural relations between the ranks.

This conception of V follows some intermediate path between the two
ontological traditions in analytic philosophy. On the one hand there are
reasons of conceptual analysis why V suits our concept SET. On the other
hand some peculiar postulates need to be laid down for V. “V” is a rigid
designator naming an entity which does not belong to some domain of
quantification, although all other entities and referents of names do!

The major difficulty here would be to allow for a level or form of meta-
theory when talking about V which is outside of any formal system. That
way may lay ineffability or some version of ontological semantic mystery!

Comparing noneism, the incomplete universe and the thesis of V being an
entity sui generis, the third idea comes out best in its combination of
conceptual analysis and axiomatic ontology. If an inconsistent or noneist
ontology is too much to swallow when taking on such a paraconsistent
system, then we have to opt for at least partial fictionalism with respect to

31 The slot of neither having members nor being a member finds no existing filler, if

there is not David Lewis’ atomless, uncollectible ‘gunk’.
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(some) entities proposed within paraconsistent set theories. Then the
exploration of universality in set theory naturally awaits a further thorough
exploration of fictionalism. Too many difficult questions wait there: Fictions
like fictional characters in literature depend historically and genetically on
their authors, and maybe on still existent copies of the literary work and
living readers (cf. Thomasson 1999), nothing of this sort can be said of pure
sets. Pure sets (like in ZFC) are not just presented as abstract entities outside
of space and time, but their presentation (the story told by ZFC) arguably
does not depend on any particular set theorist — not even Cantor, Frege or
Zermelo. There might be several intermediate ontological categories
between such purely abstract entities and spatio-temporal entities (cf.
Thomasson 1999, pp. 120-33). Even in ZFCU one may wonder about the
singletons of contingent urelements like the Cologne Cathedral: It seems
bizarre to assume it to exist before the building was finished or even planned,
thus this set seems to have a historical place! The recent interest in
fictionalism may lead to increased ontological options.

88



ABBREVIATIONS AND NOTATION

Standard symbols are used: V, 3,0, U, N, D, <, A, Vv, 0,0, X, — ...

0 (x) is the powerset of x.

x| is the cardinality of the set x.
—> is a relevant conditional

— is used in rule statements

Greek letters ¢, y ... are used as schematic for unspecified formula or
predicates (open formulas) of a given language. I', X, IT are mostly used for
sets of formulas.

CAPITALIZATION is used to signal that we now talk about a concept.

Single quotation marks are used in quotes and as ‘scare quotes’ of established
theoretical terms. Double quotations marks quote an expression. Names of
famous theorems are italicized.

M 1s the set of urelements
U is the universal set
A% is the complete iterative hierarchy, V a rank in the hierarchy
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