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Any mathematical consideration must 

be founded on the notion of ‘allness’ or 

‘quantification’ as a basic category of 

logic which cannot be subject to further 

analysis whatsoever. 

(Ernst Zermelo) 

 

What surpasses all that is finite and 

transfinite is no “Genus”; it is the 

single, completely individual unity in 

which everything is included, which 

includes the “Absolute”, incomprehen-

sible to the human understanding. 

(Georg Cantor) 
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INTRODUCTION 

 

This essay discusses the fate of universality and a universal set in several set 

theories. It presupposes a general background in logic and general 

knowledge of set theoretic basics. Even basic points are repeated if the 

context of discussion profits from a short reminder, but no systematic survey 

of the different systems is attempted. The book aims at a philosophical study 

of ontological and conceptual questions around set theory. A formal 
exposition of some consistent set theories with a universal set and related 

theorems can be found in (Forster 1992) and the sources mentioned there. A 

comprehensive formal exposition of paraconsistent set theories does not yet 

exist; some sources are mentioned in chapter V. 

 

Set theories are ontologies. They posit entities and claim that these exhibit 

some essential properties laid down in the set theoretical axioms. Like 

Zermelo (in the opening paragraphs of Zermelo 1908) Fraenkel, in his early 

introduction to set theory (1919/19282) explicitly outlines this axiomatic 
approach: 

According to the essence of this method we refrain to define the concept of 

set or to analyze it, we rather start with some axioms in which the concept of 

set like the relation ‘to be contained as an element’ occurs, and in which the 

existence of some sets is postulated. The concept of set is implicitly 

established by the totality of these axioms. 

 

Collecting these postulated entities poses the problem of universality. Is the 

collection of the set theoretical entities itself a set theoretical entity? What 

does it mean if it is, and what does it mean if it is not? To answer these 

questions involves developing a theory of the universal set. For a start we 

may define the universal set as U = {x | x = x}.1  As set theories extend first 

order logic with identity (FOL) or some variant of it (in a non-standard logic) 

they contain the axiom: (x)(x = x). U thus comprises the whole domain of 

the language. Tautologically whatever exists exists. So, supposedly, there 
are all existents. Why not continue: So there is the totality of these existents? 

Why shouldn’t they be collectible? After all, set theoretical quantification 

runs over all sets, doesn’t it? If, however, that totality was an additional 

entity we could collect another totality including it – and so forth, it seems. 

Unless this totality possessed a nature sui generis, setting it apart from 

ordinary things and sets. 

 
1  Standard symbols are used. See the appendix on notation.  
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Some of the set theories are pure set theories: their domain consists entirely 

of sets, all variables range over sets. Some of the theories contain proper 

classes in addition to sets (improper classes). Some theories contain 

additional ‘urelements’ (i.e. objects which are neither sets nor classes, but 

something to be collected into sets or classes). Some other theories use 

numbers as basic entities, not reduced to set theoretic construction. The 

discussion here will mention these differences, but will not use a neutral 

formalization, which applies to all theories; this would require using one type 

of variables and sortal predicates like “set”, “ordinal” etc. to restrict 

quantification to the appropriate type, e.g. “(x,y)(Set(x)Set(y)  …”. The 

drawback of this formalization would be its contrast to the respective 

textbooks and articles. Additionally it would be very cumbersome, e.g. 

having all the sethood statements in pure set theories like Z, the 

axiomatization of which would include now a new axiom “(x)Set(x)”,  

which had to be used all over to get rid of the sethood requirements in the 

antecedents of statements. Thus when discussing mixed type systems sortal 

predicates may be used, but not with pure set theories, and not with systems 

which only distinguish sets from (proper) classes; in the latter case lower 

case variables refer to sets, upper case variables to (proper) classes. 

The existence of urelements is important for the broader ontological picture, 

but the presence or absence of a basic set of urelements does not change the 

treatment of universality in many set theories (like ZFC). One may ask 

oneself what sort of things might be chosen as urelements. If physical entities 

are chosen, there are – in the light of our best physical theories – only finitely 

many of them, which can be collected into a set of urelements. Physical 

objects may have their own principles of composition (like mereology). 

Their presence does not influence the question whether all sets can be 

collected into a universal set. Once sets are present, there seems to be no 

need for further elementary logical (abstract) entities like numbers. A 

collection of urelements that matches the sets in cardinality seems highly 

dubious, as one may suppose every urelements to have a singleton and any 

two of them to be elements of their pair set – etc. In some cases (like 

Specker’s Theorem [in Chap. IV]) we have to talk about urelements.  

 

Several issues related to set theory will not be discussed here: We are not 

much concerned with the epistemology of mathematics in general or set 

theory in particular. With respect to epistemology all the theories discussed 

here are prima facie in the same boat. We may, however, raise some 

questions concerning whether understanding universality raises additional 
epistemological problems. We start with the ordinary working assumption 

that we have some concepts and ideas of sets and numbers and set theory 

tries to systematize them. Therefore we will not be concerned with the 



 

 9 

general issue of abstractness or ‘Platonism’ either. Again, prima facie, all the 

theories discussed here are in the same boat. We may raise some questions 

concerning whether some ways of understanding universality or the set 

theoretic universe raise additional ontological problems. 

For the set theoretical anti-realist our study is just a case study in formal 

ontology and its models. Nonetheless some such ontologies might be more 

useful than others even if all are – strictly speaking – false, as there are no 

sets whatsoever. Even if there are no sets some set ontologies may be more 

helpful fictions than others. They help in systematizing mathematics, which 

again, even if without subject matter itself, helps as part of science in 

describing reality. Even Russell held at times that sets are just a manner of 

speaking, but not part of the furniture of the world (cf. Russell 1914). 

Nonetheless as they correspond, for Russell, to the fundamental 

‘propositional functions’ talk about them is neither arbitrary nor idle. One 

theory is singled out as capturing or founding our mathematics.2 

For the set theoretical realist one set theory might be better in capturing set 

theoretical reality than another. Either one has to assume U or one has to 

assume that U does not exist. Our study then is one attempt to ascertain 

which option we have to take. Even if one endorses ‘plenitudinous 

Platonism’ (the thesis that all consistent mathematical theories correspond 

to some part of the realm of abstract entities3) the issue of U is not idle. The 

different set theories might then be taken to deal with different areas of 

abstract entities. In one area there might be something like U in the other 

area not. Nonetheless, one may argue that one of the areas has more right to 

be considered as making up sets as we have an intuitive notion of SET, which 

may be explicated better in one theory than in another. Even if there are 

several areas of abstract entities which are set-like one area may be the 

intended standard model corresponding to our concept of SET. In this 

perspective our study is concerned with the conceptual issue of analysing 

our concept of sets. Comparing the different theories and weighing the 

advantages and disadvantages of incorporating U into a set theory (i.e. the 

gain and the strain of related theorems/facts in relation to our intuitive 

understanding of sets) we may come to a result whether our intuitive concept 

 
2  Ironically Russell demanded at that time, of course inspired by the antinomy of the 

set of non self-membered sets, that saying either that a set is a self-member or that it is 

not should be meaningless (not just false). A requirement which excludes the Axiom of 

Foundation. Naturally Russell thought in terms of his theory of types, which by definition 

fulfils this requirement, but, nevertheless, was laying down conceptual constraints on a 

feasible concept of set.  
3  Cf. Balaguer 1998. The view that consistency proves sufficient to take a 

mathematical theory seriously has many variants. These include Hilbert’s formalism and 

fictionalism, a theory of course denying the existence of abstract entities. Included is as 

well Cantor’s ‘theological Platonism’, which has all consistent transfinite entities existing 

as ideas in God’s mind. 
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SET involves the assumption of a universal set or rather some other picture. 

Even if set theory was not of sets in the referential sense (as there might be 

no sets at all) set theory would be of sets in the intensional sense of setting 

out our conceptions of sets. And our question here is whether the universal 

set crucially belongs to these conceptions, or whether it is an idea at the 

periphery of these conceptions, only to be rejected on second thoughts about 

its consequences. 

 

ZF asserts that some collections we have naively thought of as sets (the set 

of ordinals, cardinals, the universal set) are not sets – i.e. they do not exist 

for ZF itself. Most surprising is this claim for U, as {x| x = x} seems so 

natural. That our untutored intuitions have to be partly corrected at the 

foundation of science, however, occurs not just in ZF but – one may well 

argue – at the foundations of physics (e.g. with our untutored intuitions about 

the locality of particles or the properties of time) or in biology (e.g. with the 

changeability of some organisms’ essence/species). Thus the mere correction 

of our prior, untutored understanding of a basic concept does not establish in 
itself that ZF goes wrong. The argument has to concern whether this is the 

best option, what repercussions this step has, and whether the resulting 

concept of sets provides a more coherent (unified and comprehensive) 

understanding of sets. 

 

The antinomies of semantics and set theory have to be treated somehow to 

provide a coherent systematic account of the notions involved. The same 

applies to the presupposed concept UNIVERSALITY in set theory. One can well 

do in large parts without treating these problems. Many a textbook works 

with informal set theory. They miss then, however, a comprehensive account 

of sets. What their success – inter alia (compare similar arguments in 

semantics) – shows is that the problems occur placed within an otherwise 

viable world view or viable procedures in semantics or set theory, say some 

version of semantic realism or of constructive representationalism. I, 

therefore, neglect theories that argue from antinomies and universality to 

some form of mysticism, ineffability, anti-representationalism, or what not.4 

 

The following issues set the theme for much of the discussion here: 

1. How can one avoid slipping into a ‘theory’ that universality is 

ineffable? 

 
4  Patterson (2008) extends his anti-representational program to mathematics. 

Postmodern authors endorse Wittgenstein’s Tractarian mysticism about ineffability. 
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2. Are there different aspects to universality in set theory, which stand in 

conflict to each other? 

3. What aspects of universality are embedded within our concept SET? 

4. May inconsistency be the price to pay to circumvent ineffability? 

and most importantly: 

5. How far can axiomatic ontology take us in postulating our way out of 

the problems around universality? 

 

Chapter I starts with the treatment of universality in standard set theory ZF. 

This raises issue (2): universal comprehension and universal collection (into 

a domain of all sets) seem to be incompatible. The approaches considered in 

chapters II – V raise issue (5) of axiomatic ontology. As already in chapter I 

the spectre of ineffability, issue (1), raises its head. Some systems engender 

their own incompatibilities between aspects of universality (like the tension 

between the universal collection into a domain vs. universal possession of a 

singleton), issue (2) again. And we have to ask which of the systems have a 

claim to be more ‘natural’ or ‘intuitive’ for us, issue (3). Chapter I also 

articulates one picture of universality: the iterative hierarchy. Articulating 

this picture raises issues (1), (3) and (5). Chapters II asks whether the 

problems can be avoided by moving either to Second Order Logic (SOL) or 

to an abstract realm ‘broader’ than the one of set theory, category theory for 

instance. Issue (4) is confronted in chapters V.  

 

Although this is a systematic study (i.e. not an historical investigation into 

the development of several set theories) sometimes it may be illuminating to 

mention and consider side-remarks made by their foundational authors. In 

these remarks one can at times discern the broader ontological picture the 

author works with.5 

 

 

 
5  As this is no detailed historical study I often omit giving the detailed source of a side-

remark, but refer the interested reader to the comprehensive studies by Ebbinghaus (2007) 

on Zermelo, Dauben (1979) on Cantor, as well as (Lavine 1998). Some remarks have 

entered the set theoretical folklore and can be found in many introductory books (e.g. 

Potter 2004) or (Deiser 2010), which contains many quotes of the founding fathers, 

following the development of set theory. 
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I 

ITERATION, FOUNDATION, AND REFLECTION 

 

ZFC has become in its first order axiomatization the accepted set theoretic 

standard. We take, as usually done, as Z the system containing the Axioms 

of Extensionality, Pairing, Powerset, Sums, Separation and Infinity. ZF adds 

Foundation and Replacement, like Separation an axiom schema. ZFC adds 

the Axiom of Choice.6  ZFC+GCH adds the Generalized Continuum 

Hypothesis to ZFC – and so on for stronger axioms. 

The antinomies (like Russell’s Paradox7) are often taken as showing that 

Naïve Comprehension 

 (NC1)  (y)(x)(xy  (x)) 

 (NC2)   (F)(y)(x)(xy  F(x)) 

is wrong. The assumption that every concept/property8 has an extension, 

which is a set, is considered rejected. The first order axiom schema (NC1) or 

 
6  Historically this is misleading as Zermelo included the Axiom of Choice in his 

system, where he used it to prove well-ordering (in 1908). He also has an extra axiom for 

the empty set, , but as in FOL the domain cannot be empty, one does not need this 

axiom, but gets  by separation. In the 1920s Fraenkel and von Neumann and Skolem 

added Replacement. Zermelo’s original system did not contain Foundation, but his 

system of 1930 does. His 1930 system ZF’ leaves out the Axiom of Infinity as he then 

considered it to be an extra-logical existence assumption. Zermelo’s formulation was not 

confined to FOL, but Skolem’s clarification of ‘definite’ property as used in an instance 

of Separation led to first order ZFC. Cantor already stated and used both the Axiom of 

Choice and Replacement. 
7  ‘Antinomy’ will be used for a contradiction provable given some theory and its logic. 

A ‘paradox’ is just a theorem contrary to our expectations and prejudices. Already 

Zermelo stressed the importance of this distinction, as otherwise one sees the likes of too 

many antinomies where there are only paradoxes. Unfortunately usage is not so clear 

nowadays. By the way: The antinomy unfortunately called ‘Russell’s Paradox’ was 

discovered some years earlier by Zermelo. It leads back – as many antinomies – to 

negative self-application of a property/predicate, the idea behind the canonical proof of 

Cantor’s Theorem, which served as the context of discovering ‘Russell’s Paradox’. 
8  In the context of this essay I take “concept” and “property” to be synonymous within 

set theories, as is usually done. In (natural language) semantics concepts may be said to 
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the second order axiom (NC2) are sometimes called ‘naïve set theory’. They 

were by no means present in all approaches to set theory introduced in the 

19th century. Cantor’s original set theory was concerned with combinatorial 

multiplicities. At times, though, he considered sets as ‘united by a rule’, 

which sounds like Comprehension. Comprehension was certainly present in 

the logicist approach to set theory of Frege and Russell. 

Now, take a version of Comprehension: the Russell Set, defined as R = {x | 

xx}, and taking ‘xx’ as the open formula (x) or the property F yields the 

famous antinomy: RR  RR. The defining property of NOT BEING A SELF-

MEMBER seems to violate the constitutive assumption behind Naïve 

Comprehension by not having an extension, on pains of inconsistency.  

There is another reading of Russell’s Paradox, however. Proceeding to 

Zermelo’s Aussonderungsaxiom (Axiom of Separation)9 or not-naïve 

Comprehension scheme (of set theory Z) 

 (AS)  (x)(y)(w)(wy  wx  (x)) 

the property NOT BEING A SELF-MEMBER can be used to derive:  

(NU)  (x)(y)(yx) 

the denial of a universal set.10  What Russell’s Paradox shows on this reading 

is that the assumption of the existence of a universal set is illicit. Cantor’s 
Theorem establishes that the powerset (x) of a set x has a larger cardinality 

than x. Cantor’s classical proof refutes the supposition of a bijection  

 

refer to properties, which are often not taken as sets. Set theoretic ontology is less fine 

grained. A distinction is made between formulas expressing a concept/property and the 

concept/property. CAPITALIZATION is used to signal a concept/property. Reflecting on set 

theory and its relation to our cognition concepts (like the concept SET) are taken in their 

usual sense as cognitive, and whether they are captured and explicated by a theory (say, 

of ‘sets’) is the matter of debate. 
9  To be precise: It is a schema in the wff . Any set can be separated by this axiom 

schema which corresponds to a wff in the language of the theory. The constructible 

universe L (used in Gödel’s relative consistency proof for the Axiom of Choice and the 

Continuum Hypothesis) consists only of such sets, which requires restricting the powerset 

operation to constructible subsets. 
10  Proof (Outline). Assume U exists. Take U as the base set x in (AS). The first conjunct 

on the right side of the biconditional can then be eliminated, being logically true. One 

arrives at the form of (NC1) and the usual reasoning to the Russell Paradox goes through. 

Reject the existence assumption concerning U by arriving at the contradiction. ◼ This 

proof can already be carried out in a weak subsystem of Z, like Kripke-Platek set theory 

KP. Membership can hardly be indeterminate for a set theoretic realist. Even if this had 

some plausibility for some sets, with respect to U something is in the universe or is not. 

Avoiding the Russell Paradox by banning R from U leaves us with the mystery where to 

put R then, or with the option that some collections cannot be sets, which leads to a 

set/non-sets distinction, we will look at in chapter II. Indeterminate membership plays no 

role here; theories without tertium non datur will be considered in chapter V, but giving 

up tertium non datur may mean rejecting both RR and RR. 



 

 14  

between x and (x) by considering the subset {x| x(x)}. If x is the 

universal set this naturally introduces the Russell Set (being an element and 

a subset of the universal set). The idea of a universal set thus stands in tension 

to a core ingredient of the concept SET: that every set has subsets, which 

should be collectible. “” is as central to set theory as “∈”: one of them 

provides a sufficient foundation: 

 (D1) x  y ≝ (∀z)(z∈x ⊃ z∈y) 

 (D∈1) x∈y ≝ {x}  y 

The Powerset Axiom focussing on “”, therefore, deserves a special role in 

any set theory, as Comprehension and/or Separation focus on “∈”. That 

U∈U may seem less unnatural than (U)U and (U)∈U.11 

Comprehension is fine as long as we restrict the domain of objects to be 

comprehended. If we assume that there is no universal set or domain even 

Naïve Comprehension need not lead to the antinomies, as one cannot take 

for granted that R (or a similar cause of trouble) belongs to the objects (sets) 

to be comprehended. (AS) provides the safe formalization of this idea. The 

property NOT BEING A SELF-MEMBER can be taken as having an extension now 

that (AS) has been adopted. Any property has an extension relative to a base 

set. And if a is the base set for an instance of (AS) with ‘xx’, the extension 

of the subset corresponding to NOT BEING A SELF-MEMBER relative to a is a 

itself (as by the Foundation Axiom no set is a member of itself, so that all 

members of a satisfy the condition xx). 

The discovery behind the set theoretical antinomies then consists not in a 

claim about properties 

 (NNC) Not every property has an extension. 

but in a claim about universality 

 (NU’)  There is no universal set. 

Both claims are ontologically substantial and surprising. Hilbert, for 

instance, thought that conception formation was in trouble, as the idea that 

being able to determine whether something falls under a concept does not 

suffice for the concept’s existence.  

The argument against U works with Separation. Using (NC) leads to the 

antinomy. One reading of the antinomic argument can also be that it uses the 

 
11  Even the problem with Frege’s ‘basic law’ (V) goes back to this, since Frege at the 

same time defines extensions as objects (i.e. first order entities) and puts them in basic 

law (V) in correspondence to courses of values (predication) of concepts (i.e. second order 

entities), by Cantor’s Theorem there have to be more extensions of concepts (namely sets 

of objects) than objects (cf. Boolos 1998, pp.135-54). Because of the complete absence 

of a Powerset Axiom we do not consider set theories like KP (Kripke/Platek set theory) 

in detail. 
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assumption that the Russell Set R is part of ‘all’ objects (i.e. within the range 

of “∀”). The range of “∀” on pains of contradiction thus cannot be 

universal, R lying outside of it. Thus there is no unrestricted quantification 

over all collections. If “∀” ranges over all sets, R cannot be a set after all. 

The collection of non self-membered sets turns out to be the range of “∀” in 

Z because of the Axiom of Foundation (i.e. turns out to be the iterative 

hierarchy V itself)! In this reading of the antinomic argument again a set of 

all sets is excluded. The reasoning poses two problems we come back to 

again and again: (i) (NC) still allows building the forbidden collections U 

and R, and (ii) the reasoning invites our naïve bewilderment where some 

collection is ‘to be’ when outside of the range of “∀”. 

The naturalness of the idea of universality or a universal set may be related 

to the Calculus of Classes (cf. e.g. Hilbert/Ackermann 1928, Chap. 2).12 

Textbooks unhesitatingly speak of a ‘universal class’ here. The Calculus of 
Classes systematizes our reasoning with respect to ‘classes’ of arbitrary 

objects by defining cuts, unions etc. The complement of such a ‘class’ a is 

an absolute complement ā, such that a∪ā is the ‘universal class’. The crucial 

point is that these ‘classes’ of the Calculus of Classes only contain 

individuals of the considered domain. There are no ‘classes of classes’. The 

‘universal class’ is just the domain considered. The ‘classes’ of the Calculus 
of Classes are neither sets nor classes. They obey some axioms (like 

Extensionality), but others (like Powerset) do not apply here. The concept 

SET exhibits much more complexity than the concept COLLECTION OF 

INDIVIDUALS! 

Given the logical apparatus of Z we can even derive: U = {x | x = x} = , 

even though we have: (x)(x = x)!13 

There are several reasons why there is no universal set in ZF: 

1. There is no U because this contradicts Cantor’s Theorem (i.e. because of 

the Axiom of Powerset). For U we should have (U)  U, but this 

contradicts Cantor’s Theorem (as, trivially, a subset has at most the 

 
12  In the following paragraph “class” is scare-quoted to make clear that these collections 

are not proper classes, but collections of individuals. 
13  Proof (Outline). If one allows for definition by abstraction in a pure set theory (i.e. 

without atoms, which are not sets) one has to use a scheme like the following:  

{x | (x)} = y  ((x)(xy  (x)  (w)(w = y))∨(y =   (w)(x)(xw  (x))) 

 

Now, for an instance of this scheme with U = {x | x = x}, assume U  , then the second 

disjunct on the right hand side is false. Therefore the first disjunct has to be true. This 

leads to contradiction again, by the proof for (NU). Thus the assumption has to be 

rejected. [In a set theory with atoms the second conjunct in the first disjunct has to be the 

meta-linguistic assumption that y is a set, cf. Suppes 1960, p.34.] 
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cardinality of the superset). [By the way: Hilbert had a similar argument 

working with self-mappings of functions of numbers.] 

2. There is no U because this contradicts the Axiom of Foundation. For U 

we should have U∈U against Foundation. 

3. There is no U by the Axiom of Separation, as shown above. 

4. As, because of further antinomies, there cannot be a set of all cardinal 

numbers or of all ordinal numbers – as was already clear to Cantor – there 

can be no U, which had to contain these sets as separable subsets. 

5. There is no U by the Axiom of Pairing in combination with Foundation 

as {U} could be built by Pairing (i.e. U and U again gives {U,U}={U}), 

but {U}∈U contradicts Foundation as {U} does not have an element that 

does not share an element with it (as U∈U). 

The absence of a universal set yields more consequences in Z, ZF and ZFC. 

In Z, ZF and ZFC absolute complements are missing: since subsets are 

separated relative to a base set the complement to a set x is not the collection 

of all things not in x, but only the collection of those things in the base set 

which are not in x. This follows the spirit of Separation, but violates, 

supposedly, our intuition as to complements. Just as Comprehension is 

restricted in Z so is complement building. There cannot be absolute 

complements as the absolute complement to  had to be U. 

As ZF and ZFC are naturally understood by the iterative hierarchy [cf. 

below] their definition of number cannot be Frege’s. Frege used a flat 

universe and defined a cardinal number as the equivalence class of sets with 

the same equinumerosity – or a representative of that equivalence class.14  

Frege defined equinumerosity by means of bijective functions. This cannot 

be done in ZF as, for instance, there are singletons of any rank in the 

hierarchy, so the supposed set representing 1 had to contain elements from 

any rank, but this is impossible for a set (contradicting the Reflection 

Principle): Sets have a minimal rank, the rank at which all their elements are 

present. A collection of sets of arbitrary high rank cannot be a set, and this 

cannot be or represent a number. 

The idea that there is no universal set seems to go against our logical 

intuitions as we have developed them working with quantificational logics: 

There is always a domain of all objects to be quantified over.  

What then can be the semantics of Z? How are its quantifiers to be 

understood? Although there is no universal set, there is universal 

quantification in Z. The axioms witness this. The Axiom of Separation, for 

 
14  In fact, in Frege’s consistent system behind the Grundlagen der Arithmetik the 

concept BEING-IDENTICAL-TO-ONESELF should have an extension, and thus a number: the 

number of all things! The system can, however, not tell us what number this is (cf. Boolos 

1987). 
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instance, says of all sets that for any condition the corresponding subset 

exists. In terms of the iterative hierarchy [cf. below] the axiom talks about 

sets of any rank. 

One issue should be made clear at the very beginning: The metaphors usually 

employed when setting out ‘the construction’ of some sets, say of the 

transfinite ordinals, should not be taken literally as involving some temporal 

procession of arriving at ever larger ordinals, ranks or cardinalities. As sets 

are abstract entities they do not depend in their existence on any one – not 

even God – counting up to them. Sets are simple there. All of them are there. 

The metaphors of construction merely serve to express the structures the sets 

employ, and may serve, sometimes, as didactic devices how we come to 

understand some set on the basis of another collection of sets. Thus, that 

there is no highest rank in ZFC should not be misunderstood as the set 

theoretic hierarchy V being under construction. All sets are there, thus V is 
there. For this ontological thesis and corresponding universal quantification 

it is irrelevant whether we have epistemic means to distinguish that totality 

from any incredibly large, but not total collection/set. 

Like FOL, which does not count its domain to be one of the objects to be 

quantified over, Z itself need not talk about its domain. A stronger meta-

language may be used to model the semantics of Z, typically a second order 

logic (SOL) talking about proper classes, one of which may be the domain 

of Z. We come back to this later.15  But suppose there to be such a model for 

Z. What should the domain of it be called? It certainly looks like a universal 

set, as it comprises all sets. Then Z cannot be complete, since it does not deal 

with all collections of objects/sets. But wasn’t it supposed to be complete in 

its application? V has to be a collection of sets, and can be no set itself in Z. 

Zermelo (cf. 1908) recognized this and concluded from the reasoning about 

the Russell Set that the domain of set theory ‘is not itself a set’. There seem 

to be totalities beyond sets then. 

 

* 

 

The standard picture of the realm of sets accompanying ZF and ZFC is, at 

least nowadays, the iterative or cumulative hierarchy. It can be argued that 

Cantor had already a conception of sets congenial to this picture, because 

 
15  I use “set” to talk about sets and “class” to talk about proper classes (so called 

because these classes either are not sets or have no corresponding set, both usages are 

common, we come back to the idea of ‘correspondence’ below). “Set” and “class” are 

thus not taken as synonymous here. All claims and theories referred to are adapted to this 

usage; formalisms/symbols are also rendered into the common format used here. 

Following ordinary usage equivalence sets are called “equivalence classes” although they 

are no classes. 
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Cantor thought of sets as build by the iterative application of set building 

functions. Frege’s set theoretic universe, in contrast, has to be conceived as 

flat (non hierarchic). The hierarchy was clearly developed by von Neumann 

(1929), wherefore it is sometimes called “von Neumann hierarchy”. Zermelo 

developed a similar picture in the late 1920s. The Axiom of Foundation and 

the Axiom of Replacement determine this picture. Foundation expresses the 

idea that a set occurs at some earliest level in the hierarchy (as sets are 

build/defined by iteration of set building operations there is some – though 

possibly transfinite – number of preceding set building operations). As 

mentioned before, talk of ‘building’ sets should not be taken as a process of 

construction, but only as an easy way to express structural dependencies 

between sets all being already there. The Axiom of Replacement expresses 

the continuation of ever higher levels (e.g. by collection a transfinite 

sequence of iterations of applying the powerset operator into a single set). 

In the pure version of the hierarchy the starting level (or ‘rank’) V0 is , then 

there are two ways of proceeding to higher ranks 

V+1 = (V)   for successor ordinals  

V = {V |  < }   for limit ordinals  

the set theoretic universe V can then be seen as a hierarchy where later sets 

depend on preceding sets (although, of course, not in a temporal manner). 

The hierarchy is iterative as the two hierarchy building operations are applied 

over and over again. The hierarchy is cumulative as the sets present at V are 

also present at all levels V with  < .16  Each set has some earliest rank of 

occurrence. All ranks are transitive sets (i.e. contain all members of members 

of members…). The strength of the operation of collecting the powerset 

provides the plenty of the next stage. Reflections about how strong the idea 

of a powerset is concern directly the issue of the Generalized Continuum 

Hypothesis (GCH). 

The picture is slightly different in a set theory with urelements. The set of 

urelements M lays at the foundation of the hierarchy V0 = M. The two ways 

of proceeding are accompanied by the requirement that for each V, M  V. 

A corresponding set theory needs to distinguish sets from non-sets and is 

called ZFU or ZFCU.17 

 
16  Remember that   V for any V as V is a set. Thus at V+1  and {} are 

present and thus each stage contains all preceding stages. 
17  Usually the system is called ZFU, with U being the set of urelements. The name 

“ZFU” may thus confuse in the context of our investigation into the existence of the 

universal set U. Nonetheless we stick with the usual name “ZFU” as urelements and thus 

ZFU and ZFCU play no vital role in this book. For us it is important to distinguish the 

set of all sets U from the class of all sets V, so we need the name “U” in addition to “V”. 
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Thus one can picture V as either a pure hierarchy of ZF, ZFC (upper part in 

the picture) or a hierarchy based in domain of non-sets (lower part).  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZFU has a broader base than ZF. The dots before V indicate that V is the 

first limit level (of transfinitely many). 

Z takes us with the Axiom of Inifinity to V, but not to arbitrary high ranks 

in V. We need ZF (i.e. Replacement) to go further. By Replacement we 

know that the function in n for n∈ which takes as value the n-time powerset 

of  has as range a set, since  is a set (by the Axiom of Infinity). Therefore 

(by the Axiom of Union) the union of all these powersets exists as a set, and 

thus as a next rank in V. Now we can move in ZF beyond V+. Note also 

that in this rank all other ZF-axioms are satisfied, while – by Foundation – 



 

 20  

the rank is not a member of itself, which establishes the independence of 

Replacement from the other ZF-axioms.18 

Up to V we find in pure set theory the hereditarily finite sets. They fit 

naturally to defining the ordinals in von Neumann’s way: n+1 ≝ n ∪ {n} and 

take  as 0. Then in V a transitive set of transitive sets is a number. We get: 

n∈Vn+1, nVn, Vn∈Vn+1, VnVn+1. Ranks and numbers thus are ∈-ordered. 

The hereditarily finite sets fulfil the axioms of ZFC save the Axiom of 

Infinity, although the Axiom of Choice and the Axiom of Replacement 

become unimportant here: The Axiom of Infinity is thus independent from 

the other ZFC-axioms. The finite system is sometimes called: ZFC-. In fact 

one could add an Axiom of Finiteness here:  

¬(∃x)(x ∧ (∀y)(y∈x ⊃ y∪{y}∈x)) 

Obviously, the Axiom of Finiteness is true up to V, i.e. for all hereditarily 

finite sets. And equally obviously V (i.e. the domain of that theory) is not 

finite. We meet the same situation as with Quine’s basic finite arithmetic [in 

chapter III]. Even ZFC- can do what Peano Arithmetic, PA, does: prove 

theorems concerning representability and provability (e.g. Tarski’s and 

Gödel’s theorems.19  Note that the hereditarily finite sets provide an intended 

model for ZFC- (i.e. in contrast to other unintended countable models for 

ZFC). Note also – and this may be thought to be important – that Naïve 

Comprehension causes no trouble within the hereditarily finite sets. The 

Russell Set, for instance, does not exist up to V as it contains all hereditarily 

finite sets, since they satisfy Foundation, and thus is infinite. If the set of 

urelements is finite as well – as one may expect in a finite physical universe 

– this finite consistency of Naïve Comprehension may be the background of 

our intuitive support of Naïve Comprehension. Let us note this as a theorem 

(“y” not occurring in  as always): 

(FNC) |{x|(x)}| < 0 ⊃ (∃y)(∀x)(x∈y  (x)) 

 
18  Remember not to confuse the indices of ranks above V with theses about the 

cardinality of the rank itself, the order type of its largest member or the index number 

occurring for the first time at that rank. +1 (i.e. {2,3,4,…1}), +2, +3 etc. are, because 

they are order types (i.e. relational) subsets of , thus countable, thus sets of ordered 

pairs (i.e. given the usual definition of ordered pairs, sets of sets of sets of natural 

numbers) being subsets of V+2, members of V+3. These ranks have cardinality 2, 3 

respectively and contain many, many ordinals.  under the usual construction (as a set of 

sets of sets of natural numbers) is a subset of V+2, member of V+3.  is uncountable, 

whether it has a order-type (not just a simple ordering, but a well-ordering) is not obvious 

and is ensured only by ZFC, not ZF.  
19  Cf. Fitting 2007. The Peano/Dedekind-Axioms for the successor function and 

induction follow easily in Z from the Axiom of Infinity. Taking natural numbers as von 

Neumann ordinals makes obvious that 0 is no successor and that the successor relation is 

functional. Induction follows since an inductive property is inherited by the successor 

relation, thus contains . 
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Let us leave ZFC- behind and look at all ranks in V. With a little pretense 

we can say: In the iterative hierarchy exists at some rank any proper subset 
of V, i.e. (a) pretending for the moment that the non-set V has subsets and 

(b) speaking only about collections that can be sets (excluding a set of 

ordinals etc.). We can approximate Naïve Comprehension up to an arbitrary 

rank: y = {x | (x)} exists for any  as long as the rank of y <  for some 

ordinal . The set y exists then somewhere below . We can say in general: 

If a set x exists x has some rank.20  Existential statements are, if true, true in 

parts of V. The Principle of Reflection correspondingly claims that if a 

general sentence or a finite collection of sentences in the language of ZFC 

is set theoretically true, there is a least rank V which can serve as its model 

(with variables in the sentences bounded to rank V).21  One might expect 

that as all specific sets mentioned in a sentence have a rank. Limit ranks 

ensure this structure. Once again – as with Naïve Comprehension – we seem 

to approximate talk of all sets! The Reflection Principle is equivalent to the 

Axiom of Replacement.22  So the fully developed picture of the iterative 

hierarchy established by Replacement approximates universal set theoretic 

talk. Unfortunately, this would be too good to be true.  

On the one hand we approximate universal set theoretic talk. And not just – 

one may claim (as Kreisel 1967 did) – set theoretic talk: Set theory can be 

considered to be our strongest formal system, the system to be used in the 

meta-theory of all other systems. Then: If some claim in some informal 

system is intuitively valid and can be captured in some formal system it has 

a set theoretical model. Kreisel’s Thesis so states: Whatever is valid is valid 

in a set theoretical model, and if – as we may suppose – finitely many 

sentences were used in that piece of reasoning, it is valid at some rank V. 

 
20  Proof (Outline). If x existed without a minimal rank at which it exists, x would 

contain all ordinals as a subset, which is impossible. 
21  This does, of course, not hold for an infinite collection of sentences as all infinitely 

many instances of the schema of Replacement enforce V. The Principle of Reflection is 

another reason why ZFC cannot be finitely axiomatized: If ZFC could be finitely 

axiomatized, then it would establish – by the Principle of Reflection – a model of itself, 

thereby establishing its own consistency, contradicting Gödel’s Second Incompleteness 

Theorem.  
22  Proof (Outline). The Reflection Principle entails Replacement, since if the antecedent 

of Replacement is true, there has to be a rank V modelling it; the set postulated as 

existing in the consequent of Replacement will be a subset of that modelling rank V. 

Replacement entails each instance of the Reflection Principle in going through the 

quantifiers of the finitely long compound (x)(x) taking the lowest possible rank of 

satisfying instances (which have to be there to make (x) true) and uniting them and their 

dependencies (by a Replacement function) into a highest most comprehensive rank, 

which thus models (x)(x). ◼ Omitting the Replacement schema and restricting 

separation to formula  with quantifiers bounded to some set provides a further weakened 

theory Z- (also known as ‘MacLane Set Theory’), which nonetheless proves sufficient for 

most of mathematics. 
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On the other hand, however, we, obviously, shift the domain of reference 

from V to some rank V. So a universal statement (say, the Axiom of Pairing) 

does no longer talk of all sets, but only of those up to V. Seen in this light 

the Principle of Reflection resembles the Löwenheim/Skolem-Theorem in 

allowing for non-standard or unintended models of universally quantified set 

theoretic sentences. As V can be arbitrary high one may see this as less 

concerning than the countable models ensured by the Löwenheim/Skolem-
Theorem. If V is a sufficiently high transfinite rank we approximate 

universal talk. We can also understand the possible shift of domain of 

reference as underlining the insight that universal set theoretic talk is bound 

to strong axioms like Replacement.  

The universe V is not reached by any ladder (‘construction principle’) used 

within it. It is as strongly inaccessible by such steps as it can be. Otherwise 

we only have a temporary halting point V. V is no number, is no set, no 

union or power of sets. V can only be thought as sui generis. How do we 

know this? Because otherwise it could be superseded in one of the usual 

ways. We thus have a transcendental argument concerning V’s nature: it 

cannot be otherwise, since otherwise it wouldn’t be. 

Without the Axiom of Foundation or endorsing an Anti-Foundation Axiom 

the realm of sets is larger containing with the unfounded sets more collection 

like entities. Where are these collections collected in? U seems a good 

candidate for an collection of unfounded collections as U∈U itself. But 

unfortunately, Z forbids U. Are unfounded collections sets? Or does our 

concept SET entail that sets are grounded collections? In this case we had the 

problem that on the one hand we had to endorse the Axiom of Foundation, 

but this excludes U from our set theory. If sets are abstract entities nothing 

seems to exclude that they contain themselves as all spatial images are 

inappropriate. Picturing non-wellfounded sets by graphs (cf. Aczel 1988) 

shows easily membership bending back to its origin. Anti-foundationalist set 

theories contradict our concept of set, however, if set identity becomes more 

than identity of membership (cf. Aczel 1988, chap.4). The iterative hierarchy 

motivates our picture of sets as well-founded by stressing the idea of 

ontological structural dependence between a set and its members. In this light 

a set containing only itself, x ={x}, seems unnatural. U, in contrast, contains 

besides all other things itself. We might recognize U as a set sui generis and 

allow for U what we do not allow for other sets. Foundation would make an 

exception for U. But the exceptions would not end here as U, being subject 

to the others axioms if still a set, is exceptional – even inconsistent – with 

respect to Cantor’s Theorem, for instance. Foundation certainly is built in 

the iterative hierarchy and V does not pose the problems with respect to 

Foundation that U does. According to the story of the iterative hierarchy, 

unfounded sets do not exist. The Axiom of Foundation follows from the set 

up of the cumulative hierarchy. The two conditions to proceed to higher 
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ranks ensure the axioms of Pairing, Sums, Powerset and Infinity. Coupled 

with the idea of sets being extensional the structural properties of the iterative 

hierarchy thus entail the ZF axioms (cf. also Boolos 1989). 

There are – besides the question of an Anti-Foundation Axiom – 

incompatible set theoretic axioms (like the Axiom of Choice vs. the Axiom 

of Determinacy23), which shows that there are related realms of set-like 

entities (sharing the basic axioms), but which cannot be consistently united. 

There might be a unified inconsistent realm of all these sets [cf. Chap. V]. 

Even the incompatibility need not show that our concept of set is not settled. 

One of the set theories may be thought to be more natural. Even a concept 

SET settled in its basic aspects (like set separation and powerset existence) 

may leave some questions unsettled. The (Generalized) Continuum 

Hypothesis is the best known example. The simple Continuum Hypothesis 

[¬(∃x)(0 < |x| < 2o)] is even independent of the Axiom of Choice.24 

V has sets of arbitrary high rank. V itself does not occur in the hierarchy 

itself. V taken as the proper class of all ranks in V is a model of ZF. If V 

exists ZF is consistent, as V satisfies all its axioms. Large cardinals (strongly 

inaccessible cardinals beyond the reach of any set building operation by 

being uncountable, regular and greater than 2 for any preceding cardinal ), 

if existing, are such models as well. For V the axioms of ZF are construction 

principles and thus trivially satisfied. For (strongly) inaccessible cardinals 

the important observation is that they are assumed to be just larger transitive 

 
23  Cf. Jech 2003, pp.627-43. The Axiom of Determinacy in so-called ‘Descriptive Set 

Theory’ contradicts the Axiom of Choice, what one may take to be bad enough. It also 

entails some strange results for large cardinalities (like 1, 2 being measurable 

cardinals, but 3 … not being measurable). ZFC seems closer to our conception of sets 

in this regard. 
24  Proof (Outline). Alephs are defined as infinite well-orderable cardinals. The Axiom 

of Choice is equivalent to the statement that any infinite cardinal is an aleph (as it implies 

the Well-Order Principle). Negating the Axiom of Choice (and thus the Well-Order 

Principle) one may endorse the simple Continuum Hypothesis but maintain 2o  1, 

since one may now deny that the Continuum can be well-ordered, whereas the 

combination with the Axiom of Choice entails 2o = 1, since the Axiom of Choice 

entails that any infinite initial ordinal is an aleph. ◼  

Cantor proved in 1883 that there is no cardinality between the cardinality of the collection 

of finite ordinals (0) and the cardinality of the collection of all countable well-orderings 

of , that cardinality thus being the next well-orderable cardinality: 1. Given the 

Continuum Hypothesis 2o is the cardinality of all countable linear orderings of . Given 

the Well-Order Principle thus 1=2o.  

The Generalized Continuum Hypothesis (GCH) entails the Axiom of Choice: Using the 

first aleph GCH claims for all infinite cardinals x = 2y+o. x = 2y+o entails x being an 

aleph, which makes y an aleph. The GCH thus excludes that there are cardinals in between 

well-orderable cardinals (i.e. in between well-orderable sets), so that via its respective 

cardinal number any set can be well-ordered. ◼ (On arguments and intuitions around CH 

and GCH cf. Potter 2004, pp.266-82; Maddy 1988, §2.) 
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sets. Take the least such cardinal; any function within it is of lower rank as 

the cardinal itself; thus the range of the function is a set, which has this least 

inaccessible cardinal satisfy the Axiom of Replacement – the other axioms 

are obviously satisfied again (cf. Jech 2003, pp.165-67). 

Having all subsets of a rank present at the next rank suits the Axiom of 

Choice: If a family of non empty sets x exists at some rank V, the members 

y of that family exist already at lower ranks V with <, and their members 

z exist already at lower ranks V with < (relative to a  for some y); thus as 

these z are elements of some V a set w containing one of them for each y∈x 

exists (at the latest) at the rank V of x. Choice is natural in the iterative 

hierarchy. V rather corresponds to ZFC. 

Once we have one of the inaccessible cardinals or the class V of all sets we 

have a model of ZF and could be content with respect to our theory of sets. 

So should we care about their nature? 

 

Leaving V to the side for a moment let us consider large cardinals. We have 

just talked about them, so we know something about their nature and we can 

ascribe properties to them. So they should be the objects of some theory. 

Zermelo thought of strongly inaccessible cardinals (his ‘Grenzzahlen’) 

forming themselves an unbounded sequence. This, however, implies that we 

quantify over them, and are again in the situation of asking over what domain 

now our quantifiers run. Is this collection of Grenzzahlen itself some 

Grenzzahl? Supposedly not to avoid antinomies of the Burali-Forti-type. 

Then again if we now introduce Super-Grenzzahlen we can start all over 

again with them – and once more the whole process iterates. Zermelo 

thought: ‘This series reaches no true completion in its unrestricted advance, 

but possesses only relative stopping-points, …’ (1930, p. 47). 

Now, this way of thinking may be innocent for a constructivist, but for a set 

theoretic realist the idea that sets have to come into existence is simply 

wrong. Placing them at some rank in the hierarchy does not mean that they 

come later (in time?) than the other sets. Frege’s universe is anti-

foundational. And for a Platonist an anti-foundationalist universe has the 

advantage of keeping all ideas of stepwise construction at bay. As all abstract 

objects are there they exhibit some ontological dependencies, but this does 

not require that some are before or beneath others. Impredicativity is no 

problem in such an anti-foundational universe. Zermelo himself rejects any 

spatiotemporal associations. A well-ordering ‘has nothing at all to do with 

spatiotemporal arrangement’. He also thought the term “choice” to be 

problematic as one may associate (temporally) successive choices being 

performed, where we have only a representational/selectional correlation (cf. 

Ebbinghaus 2007, p.69, 135). The ranks express a structural dependency 

only. All ranks are there. In the same way all of that coming beyond the set 
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theoretic ranks (i.e. any large cardinal) is there. Thus there should be a 

collection of it all. Assuming a sequence of large cardinals thus does not 

seem to solve the problem of collecting sets, but either adds the issue of an 

incomplete universe [cf. Chap. VI] or means that V contains them all and 

only our set theory, say ZFC, is not complete yet and has to be strengthened 

by further axioms.  

The issue of large cardinals is independent from that of the universe of sets. 

If one can argue that some idea of some type or large cardinals comes from 

our concept of sets – say, why should 0 be the last inaccessible? – then 

these large cardinals may be thought of as stages in V above those which 

ZFC (so far) treats of. Any type of closure operation on preceding collections 

should correspond to a set within V. This idea resembles the content of the 

Reflection Principle: Any finitely specified closure condition can be 

modelled by some rank. Large cardinals may provide a universe and a model 

for ZFC, but they differ from classes in being collectable themselves and 

thus being members of the overall universe of (extended) set theory. Another 

argument for such additional sets stems from Scott’s proof that VL given 

large cardinals, as the notions of (unrestricted) powerset and uncountability 

stand in conflict to V=L. The constructible universe seems unnatural, even 

though V=L entails the Axiom of Choice and the Generalized Continuum 

Hypothesis, excluding it speaks in favour of large cardinals. The 

constructible universe violates the idea of purely extensional sets inasmuch 

as pure extensionality should allow for sets beyond any descriptive powers. 

One might think that it follows the idea of Naïve Comprehension, that sets 

correspond to properties, but why should all objective properties correspond 

to formulas in the first place? Proceeding to the next rank by the full powerset 

operation suits the simple idea of the powerset. Curtailing the powerset to 

subsets which are definable leaves out sets that should be there. 

V is the ultimate model of the universe also in the sense that constructions 

like ‘forcing’ or means of building ‘inner models’ start from V (cf. Arrigoni 

2007; on the formal details cf. Jech 2003, pp.175-223).25 

The iterative hierarchy does not know several classes. It might be preferable 

not to call V a class, but to treat of V as a very special object in its own right 

– an issue of axiomatic ontology. If we call V a class it is not to be thought 

of in the manner of NBG or MK, since there is no part of set theory which 

addresses it, like Comprehension and Limitation of Size address classes in 

NBG or MK [cf. chap. II below]. V is not in the range of set theoretical 

quantifiers. It is not in the domain. Calling V ‘a class’ in the context of the 

 
25  Leaving here to the side the problem that such models are non-standard or 

unintended, e.g. in being countable; cf. the remarks in the next chapter on limits of 

expressivity. One may add that inner models like L, which restrict the powerset operation, 

but satisfy the others axioms in their standard reading (relative to the shrunken universe), 

are less non-standard than models generated by forcing. 
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iterative hierarchy and ZFC means there exists only one class (outside of our 

theory of sets).26 

V is the range of the quantifiers in ZFC. Cantor claimed that every potential 

infinite presupposes an actual infinite ‘and cannot be thought without it’ (cf. 

Cantor 1887). This is the Domain Principle: Speaking of and quantifying the 

x presupposes the domain of the x.27 

V is a very special entity, both within the picture of the iterative hierarchy as 

in our meta-theory modelling our theory of sets. V has no subsets as V is no 

set. V is not well-ordered – even in the presence of the Well-Order Principle 

only sets are well-ordered. V is not the domain of a (replacement) function, 

sets are – and so on. V contains all ordinals and all cardinals, but there is 

neither a set of all ordinals nor a set of all cardinals. They cannot be 

established as subsets of V, since V is no set (and thus Separation does not 

apply to it). 

 

For V to be more than a stopping point to be superseded V has to be an entity 

sui generis. This means informally that V is exactly what the picture of the 

iterative hierarchy shows it to be. V is determined, not indefinite, and unique. 

Formally this means 

• that V cannot be an element of whatsoever other collection – on pains 

of re-introducing distinctions of the set/class-type 

• that there are no other entities of V’s type (not a collection of proper 

classes) 

• that V is an entity which can be talked about by its name, without 

including it into a domain of reference. 

V is not a standard object of (set theoretic) model theory. The only thing V 

‘does’ is containing all the sets. A universally quantified sentence of pure set 

theory is meaningful as there is an entity which provides all the variable 

values: V. 

 

 
26  At some time Cantor considered distinguishing several ‘absolutely’ large, 

‘inconsistent’ collections (like those of all ordinals or all cardinals). But they play no role 

in a transfinite set theory based on standard logic. Even apart from producing antinomies, 

these collections play no indispensable role in proofs about sets. So Cantor came to 

consider the single absolute, inconsistent totality beyond any further increase. 
27  Cf. Moore 1990, pp. 114-22; Tiles 1989, pp. 95-107. The principle sometimes – 

ignoring Cantor? – is discussed as ‘All-in-one Principle’, going back to (Cartwright 

1994). 
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A unified language has to distinguish urelements, sets and V. Again: V 

cannot be unified with them in a domain. The name “V” refers to V rigidly. 

End of story.
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II 

LIMITATIONS OF SIZE 

 

The idea of classes already mentioned we may take the universe of Z (and 

other related set theories like ZF, ZFC) to be a class. We have to have formal 

resources then to distinguish classes from sets. Let us use “V” to denote the 

class of all sets (by what ever condition it may be identified, i.e. whether by 

“x = x”, for sets x, or something else). V is universal for sets. 

As “U” was used above to denote a universal set, V  U as long as classes 

and sets are kept apart.  

Von Neumann (1925) introduced a new axiomatization of set theory – 

originally working with functions instead of collections – distinguishing 

proper classes from sets.28  Von Neumann explicitly states the axiomatic 

approach now obligatory in set theory: 

To replace this [naïve notion of set] the axiomatic method is employed; that 

is, one formulates a number of postulates in which, to be sure, the word “set” 

occurs, but without any meaning. Here (in the spirit of the axiomatic method) 

one understands by “set” nothing but an object of which one wants to know 

no more than what follows about it from the postulates. 

 

In NBG classes are distinguished from sets by the Limitation of Size Axiom. 

It says: 

(LSA)  A class is not a set if and only if  

there is a bijection between it and the universal class V. 

The ‘universal class V’ is, again, universal for sets only. Thus there is only 

one size for classes. Some collections are too big to count as sets, therefore 

the name of the axiom. All other improper classes may be either taken as 

being sets themselves or having a corresponding or representing set (cf. 

Bernays 1968, p.63), which has the same elements as the improper class.29  

 
28  The present form of the theory resulted from further development and employment 

by Bernays (1937, cf. 1968) and Gödel (1940) and therefore is called “NBG”. 
29  As I use “class” for proper classes in distinction to sets, I use “improper class” here 

for collections X that are bound by class variables in NBG, but have a ‘representing’ set 

x such that (y)(yx  yX). 
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Limitation of Size entails the Axiom of Choice: because there cannot be a 

set of ordinals, the collection of ordinals has to be as large as V, which, 

therefore, can be well-ordered. Limitation of Size in itself does not exclude 

a multitude of proper classes. It excludes a multitude of cardinalities beyond 

|V|. 

Limitation of Size by assuming V to be a class works with the idea ‘one size 

fits all (classes)’. All classes have the same size. Even if we grasp the idea 

that some size is too large to be collected into a set, why should we stop the 

idea of oversized collections to continue? Why shouldn’t there be some 

operations or some structure with respect to classes that provide super-

classes? And if there is some intuitive/conceptual appeal to the idea of 

Limitation of Size, why not stop earlier? Why assume V+ or even V as 

sets in the first place? 

Limitations of size are unspecific or open as to which size might be taken as 

limit. Randall Holmes ‘Pocket Set Theory’ (PST) uses 1 as limit (i.e. the 

universe has cardinality 1 and all infinite sets within that universe have 

cardinality 0). So PST has the Continuum Hypothesis built in. PST (cf. 

Holmes 2006, §9.1) has the axioms: Extensionality, (SC*) of MK, Existence 

of  and Singleton {x} for a set x, (unordered) Pairs, Existence of Relations 

(i.e. ordered pairs); the Axiom of Proper Classes, that all proper classes have 

the same size, is the PST version of Limitation of Size; the Axiom of Infinity 

not just degrees an infinite set, but demands all infinite sets to be of the same 

size, 0. The Powerset Axiom is, of course, missing: the powerset of an 

infinite set is a proper class (of cardinality 1), no further power can be 

generated. The Russell Class is a proper class in PST as well. And as the 

ordinals are a proper class the universe of PST can be well-ordered (i.e. 

Choice and Replacement follow as theorems from the mentioned axioms, 

just as in NBG and MK). 

What PST lets us see by all this is that any stopping point in limitations of 

size is arbitrary. PST suffices for a lot of mathematics, and even moving 

upwards a few alephs still has us positing some arbitrary limit, as long as the 

limit is assumed to be of the kind we know from NBG, establishing an 

uncollectible collection of equinumerous collections of a new kind. 

Limitation of Size, thus, seems unnatural. Let us come back to the issue of  

Comprehension. The formal language of NBG and MK uses typically (at 

least) two sorts of variables and constants: one type for sets, the other type 

for classes (and may be other types for atoms…). NBG might be seen as 

further evidence for the thesis that the problem behind the antinomies rests 

not in Comprehension but in universality. Bernays (1937) and Gödel (1940) 

derive within (their syntactic versions of) NBG a Comprehension Principle 

(as a schema in ) for sets: 

 (SC) If  does not contain bound class variables, 
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  (Y)(x)(x  Y  (x)) 

This principle of Set Comprehension (SC) collects sets (lower case 

variables) in a proper or improper class (upper case variable) corresponding 

to a defining property . “x=x” gives us V, “x”  etc. The improper classes 

will have a representing set then. Further on, NBG is a conservative 

extension of ZF; in the language of ZF the two systems have the same 

theorems. As NBG is a stronger theory than ZFC one can use it to describe 

a model of ZFC. In a sense we understand what ZFC says and see the 

consistency of ZFC in such a model (given, of course, that NBG itself is 

consistent). As V provides a model of ZFC, showing it to be consistent, an 

extension to V+1 taking V, say, as the first strongly inaccessible cardinal V 

and V+1 = (V) shows NBG to be consistent! The difference (V)\V 

then contains all proper classes. And there are then many, many more proper 

classes than sets. If classes are understood as collected by formulas, there 

cannot be more classes than formulas, there being thus less classes than sets. 

One then has to forsake collecting subclasses, which should exist, since there 

elements exist, into a collection – etc. As classes are supposedly larger than 

sets the whole conception of tying classes to formulas seems to add new 

peculiarities to the old ones. 

NBG thus contains Comprehension as well as universality. Of course NBG 

contains only universality for sets. Universality comes at the prize of 

accepting a new ontological category: (proper) classes. Classes themselves 

are understood inasmuch as one can give the axioms of a theory as class 

axioms and then provide corresponding principles for sets. The main 

drawback, however, is the well known shifting or elevation of the problem 

of universality to classes. We have a class of all sets, but, of course (i.e. on 

pains on versions of the set theoretic antinomies), we have no class of all 

classes. (Often we have not a single class of classes as classes are taken only 

as containers and never as elements.) This is as disturbing as the original 

problem with U, one might think. Certainly classes should obey: (X)(X = 

X). Therefore there should be a collection of them – what are the class 

quantifications running over, anyway?  

If quantification is throughout being treated extensionally, then to admit 

quantification over classes is to presume that the classes of sets form a 

determinate totality which ought itself to be admitted as a class, a class to 

which all classes of sets belong. (Tiles 1989, p.130) 

 

* 

 

Morse/Kelly-Set Theory (MK) differs from NBG in having a unrestricted 

Comprehension Schema (with a class variable X) 
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(SC*)  (∃X)(∀y)(y∈X  (y) 

where in  one may have bound class variables as well as set variables. The 

schema is thus – in distinction to NBG – impredicative. MK and NBG share 

Limitation of Size. NBG does not extend ZFC in the language of sets, MK 

does. The extensions of ZFC brought about by MK can, however, also be 

proven in ZFC+(some large cardinals). Proper classes are not needed to 

deliver new theorems about sets. 

In fact, as there are finitely specific operations to built sets from sets (like 

complements, products, cuts…) NBG can be finitely axiomatized (by 

substituting more specific set building axioms for the schematic (SC), which 

can then shown to be valid) whereas neither MK nor ZFC can be finitely 

axiomatized, because of the schematic character of (SC*) and Separation and 

Replacement (cf. Cohen 1966, pp.73-78; Montague 1961).30 

Both NBG and MK endorse the important existence claims: 

([∈])  (∃X)(X={<x,y> | x∈y} 

([=])  (∃X)(X={<x,y> | x = y} 

There is a class representing the membership relation (between sets). This 

suits the idea of having membership (represented by “∈”) as the basic 

relation in set theory. The absence of these collections seems as unnatural as 

the absence of U. The collection [=] can stand in for U – as U does not exist 

in NBG or MK, since a set cannot be that large. 

Both theories are two-sorted first order theories having, for instance, non-

intended countable models. 

In their intended interpretation some see in them a solution to our quest for 

U – and/or [∈]. The major problem with this view is their unaccounted use 

of the multitude of classes, which are quantified. The realm under 

consideration needs to include both representable classes (and their 

corresponding sets) as well as the proper classes. What is it? V – as 

understood by NBG and MK – is just a member of this domain! 

One may even have classes within classes, as long as Comprehension (SC) 

only applies to sets. In Ackermann set theory (cf. Ackermann 1956) classes, 

therefore, cannot be distinguished from sets by being non-members. Each 

class, for instance, has its singleton. 

The notion of set cannot be defined in this theory. Ackermann uses a 

comprehension principle restricted to sets: 

(ASC) (∀x)((x)⊃Set(x))⊃(∃y)(∀x)(x∈y  (x)) 

As “Set(x)” is a formula we have: 

 
30  Of course ‘finitely axiomatized’ always means ‘consistently axiomatized’: any 

system using FOL can be inconsistently finitely axiomatized by the axiom: ⊥. 
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(1) (∀x)(Set(x)⊃Set(x))⊃(∃y)(∀x)(x∈y  Set(x)) 

So we have some collection (i.e. a proper class here)31 containing all sets, 

although the notion of set cannot be defined! Ackermann’s set theory with 

respect to the well-founded sets turns out to be equivalent to ZF. It differs 

from NBG in having not all of NBG’s proper classes (e.g. no proper class of 

ordinals, cf. Holmes 2006, §5; Lake 1973). 

If one allows for proper classes, but then proceeds (indefinitely) beyond 

classes, as classes should be collectible themselves (e.g. Blau 2004), one 

should never have made a set/class-distinction in the first place. A stopping 

point in the progression of collections can only be a unique entity of a 

different kind. 

 

We come back to the class/set-distinction in chapter VI. Whatever virtues 

and beauties NBG and MK provide they do not solve our problem of 

universality.  

 

* 

 

The picture and the criticism do not change much, when we turn to Second 

Order Logic (SOL). Zermelo himself always aimed at a categorical 

characterization of sets. In both his systems he used SOL, claiming this to 

be more natural than a first order version of ZFC and in awareness of the 

downward Löwenheim/Skolem-Theorem. FOL is sound and (strongly) 

deduction complete, but SOL allows for categorical models.32  As all 

properties of infinite sets are structural this (identity up to isomorphism) is 

perfectly fine. The second order version of ZFC is ZFC2. Since ZFC2 is 

categorical an ZFC open question like the Continuum Hypothesis is settled 

by the ZFC2 models – if it has any, of course. 

ZFC2 can express the concepts of finitude and infinity: 

(INF) (∃)((∀x)(∀y)((x) = (y) ⊃ x=y) ∧ (∀x)(X(x) ⊃ X((x))) ∧ 
(∃y)(X(y) ∧ (∀x)(X(x) ⊃ (x)  y)) 

 
31  In Ackermann Set Theory there are non-sets. Proof (Outline). Argue indirectly 

starting with one of the antinomies, say the condition “xx” and assume “Set(y)” for the 

collection y of sets xx, arrive at: Set(y). 
32  Note that the soundness of FOL does not automatically carry over to first order ZFC, 

as FOL is proven sound with respect to set theoretical models/domains. For parts of V 

there are – by the Reflection Principle – models for the restricted axioms (namely some 

higher ranks). V itself cannot be taken as a domain in the fashion of FOL soundness 

proofs. 
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is open in “X” (resembling the Axiom of Infinity with “” denoting the 

successor function). The negation of this sentence expresses finitude (FIN). 

Models of these two sentences (INF) and (FIN) have to be infinite, 

respectively finite; there are no non-standard models or versions of the 

Löwenheim/Skolem-Theorem. 

The Continuum Hypothesis then becomes: 

(CH2) (∀X)(INF(X) ∧ X  (0) ⊃ |X| = 0 ∨ |X| = (0)) 

This is either true or false in the ZFC2 models. It does not follow from the 

other axioms though. 

ZFC2 is the system consisting of: 

• SOL (extending FOL by rules for introducing and eliminating second 

order quantifiers); identity is not a logical constant “=”, but defined, x 

= y ≝ (∀X)(X(x)  X(y)). 

• The ZFC axioms: Extensionality, Foundation, Pairing, Sums, 

Powerset and Infinity. 

• The Axiom of Replacement: (∀)(∀x)(∃y)(∀z)(z∈y  (∃w)(w∈x 

∧ z = (w))) 

•  The Axiom (Schema) of Comprehension: (∃X)(∀y)(X(y)  (y)) 

[where “X” is not free in ] 

•  The Axiom of Choice: (∀X)((∀y)(∃z)X(y,z) ⊃ (∃)(X(y,(y))) 

Replacement says that the restriction of any function to a set gives a set as 

range. Replacement – as always – allows deriving Separation, the Axiom of 

Comprehension is, of course, much stronger. Replacement is no longer a 

schema, Comprehension is. This system ZFC2 is equivalent to MK [cf. 

(SC*) above]! It has to be strengthened piecemeal to attain a more inclusive 

character (e.g. by adopting CH2) although it will never be deduction 

complete. 

Full blooded SOL is more than two-sorted FOL (with one sort of variables 

for individuals/sets and one for collection of them). In a pure set theory 

ZFC2 takes sets as individuals and all collections of them as values of the 

second order variables (cf. Shapiro 1991). Otherwise, as with FOL, the 

Löwenheim/Skolem-Theorem applies and there are countable models. ZFC2 

if not just a many sorted first order language quantifies over the properties 

used in first order ZFC. ZFC2 is thus a property theory. Comprehension 

says there is a property corresponding to any (first order) open formula in 

the language, only by an extensional perspective can these quantifiers be read 

as referring to classes. The second order variables thus are in this extensional 

perspective not ambiguous: “X(y)” can be read as y having either the 

property or belonging to the class X. One could also distinguish within the 

first order variables between urelements and sets. Some of the collections of 
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sets are sets themselves. As in NBG one might single our those sets 

collections which correspond to a (representing) set (like in NBG classes can 

– but need not – correspond to representing sets). The domain of the first 

order variables in ZFC2 has to be the collection of all sets, the second order 

variables ranging over subsets of this domain. If one models ZFC2 with a 

typical meta-theory this meta-theory may be a set theory of the kind ZFC+ 

(e.g. with some axioms postulating large cardinals). In case the domain of 

individuals is taken as the first (strongly) inaccessible cardinal  the second 

order variables range over the powerset of , as even inaccessible cardinals 

are introduced as sets, although larger ones.  

There is another interpretation of ZFC2 though. One may take V as the range 

of first order variables (or at least those of the set type). One may take subsets 

of V as the range of second order variables. As V must not be taken as a set, 

there is no need to submit it to the Powerset Axiom. Of course the meta-

theory in this case will not be modelled in a set theory of any strength, but if 

V is an entity sui generis one may expect so. Set theory is the strongest 

formal system, since we use it or could use it to model other formal systems. 

Therefore, we may allow it to be special in describing its way of reference 

and variable binding [cf. Chap. VI for further discussion].  

Plural quantification (as popularized by Boolos 1984, 1985) avoids 

introducing a collection of classes. It thus fares better in adding no new 

riddles than MK-style theories. Plural quantification, however, risk falling 

back to the strength of a two-sorted FOL. More importantly, the issue of V 

cannot be dissolved this way. Even if the uppercase variables (formerly 

known as ‘class variables’) bind individuals together as group without at the 

same time building a new collection – quite a feat, one might think – the 

individuals still come from a presupposed domain: The plural quantifiers 

share the feature of first order quantifiers of picking out objects out of that 

domain. The domain issue does not go away by just presupposing the domain 

or reverting to a stronger meta-theory again. 

 

Turning to SOL so does not solve in itself our problem of universality and 

an unaccounted set/class-distinction. SOL and ZFC2 (e.g. as used by 

Shapiro 1991) are even worse than NBG or MK, because identity is defined 

only for individuals (i.e. sets), as is clear from the definition: x = y ≝ 

(∀X)(X(x)X(y)). So classes cannot be identified. The background theory 

assumes an extensional understanding of the second order variables 

(equating predication, X(y), with membership, y∈X), but extensionality is 

not expressed within the language. Classes are thus a sort of collections 

different from sets not only in size (as in NBG and MK) but also in character. 

One can add extensionality by the axiom:  

(EXT2) (∀X,Y)(X=Y  (∀x)(X(x)  Y(x))) 
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Before we, thus, leave ZFC2 behind we have to consider shortly two 

arguments that we have no other choice in set theory than turning to a higher 

order logic. 

It is sometimes said that to accept a schema presupposes endorsing its 

universal closure (supposedly in a stronger meta-theory). Even if that was 

true – which is not obvious as Hilbert’s use of indefinite expressions may 

show – it would not commit us to SOL in case of ZFC. The quantification 

can concern formulas in the language of ZFC. Transforming ZFC into a 

many-sorted system looks like substituting a second order system (by 

employing a second group of quantifiers) for ZFC, but without full blown 

second order semantics we stay with ZFC; as there are countable many 

formulas there is – in light of the ‘schema’-argument – no need to revert to 

full blown second order semantics. We reach a sort of Henkin-semantics for 

a many-sorted version of ZFC (i.e. with respect to the second order 

variables). 

The argument in favour of higher order and second order logic is, further on, 

often put in terms of expressive power.   

Many concepts are said to be inexpressible in FOL, for instance: FINITUDE, 

WELL-ORDER, UNCOUNTABILITY. There are formula which seem to express 

these concepts, for instance 

|x| < 0 and  |x|  1 

express that the cardinality of x is less than 0 (i.e. x is finite), respectively 

at least 1 (i.e. x is uncountable). Both are available in first order ZFC. The 

claim that they do not express what they seem to express appeals to the 

Löwenheim/Skolem-Theorem that any first order theory has models which 

are countable and models or arbitrary infinite size. As the two expressions – 

and in fact any theorem and axiom of ZFC – can be made true in such 

models, they do not enforce that the structure corresponding to ZFC has the 

properties the formulas of ZFC talk about. In this sense concepts like 

FINITUDE and UNCOUNTABILITY are inexpressible in ZFC. As SOL is 

categorical in its models, any property it expresses some structure as 

possessing is enforced on the models. See the two sentences (INF) and (FIN) 

above. SOL in this sense is able to express, for instance, FINITUDE and 

UNCOUNTABILITY. The Löwenheim/Skolem-Theorem does not hold for SOL. 

Given that sense of expressivity the only adequate set theory may be taken 

to be ZFC2. Unless – still following this line of reasoning – one incorporates 

very large cardinals (like ‘measurable cardinals’) as these aren’t even 

uniquely 3rd order describable (cf. Jech 2003, p.295)! 

Now, the models which spoil the work of formulas like the two above are 

clearly unintended models. As a reply to the argument in favour of higher 

order logic this is not as weak as an appeal to an easy recognition of intended 
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models seems. It is not just so that – as logicians like Russell and Frege or 

Lesniewski in pre-model theoretic semantics time sometimes said – the 

formulas of our formal language carry their (intended) sense on their sleeves; 

a view which only the now omnipresent distinction between pure syntax and 

(almost arbitrary) interpretation casts doubt on. In case of set theory – as in 

case of many other logical systems – we have a clear picture of the intended 

interpretation: in case of ZF – the iterative hierarchy [the picture just outlined 

in Chap. I]. The iterative hierarchy is a model for ZF, it not only makes its 

axioms and theorems true, but it makes them true in their intended 

interpretation – including those formulas which claim a set to be finite, 

uncountable, well-ordered etc. Given the picture provided by the iterative 

hierarchy the case against first order set theory based on expressive 

limitations seems rather weak. 

On the opposite, one may raise worries about SOL. In a wide sense of “logic” 

many formal systems are logics, sometimes just a set of formulas with 

closure conditions is taken as ‘a logic’. Logic as related to (human) reasoning 

requires a much narrower sense of “logic”. A logic, roughly, models some 

ways in which (human) reasoners derive consequences from premises. The 

modelling typically employs a formal system with an explicit syntax and 

semantics. A constraint on logics in this sense follows from the fact that 

humans are finite reasoners – at least in their earthly life. Therefore they can 

draw inferences only from a finite set of premises. If a consequence follows 

from a set of premises, it has to follow from a finite subset of these premises: 

compactness. A logic in the traditional, not technically liberalized, sense has 

to be compact. As SOL is not compact, it is no logic in that sense. So 

whatever else may have been arguments in favour of SOL they are to be set 

aside.33  

Within standard logic and an object-/meta-language distinction there might 

be a fruitful division of labour: the logic used will be a first order system, 

and the meta-language will contain a categorical description of the intended 

model (as any way of spelling out the intended model, even talk of intentions 

concerning reference to the iterative hierarchy, in a first order language can 

be re-interpreted again). 

Whatever virtues SOL as a linguistic framework has, whatever beauty 

second order descriptions may have from (a) God’s point of view, the human 

concept SET cannot be bound in its logic to them.  

 
33  At one point Shapiro (1991, pp.50-53) seems to see the problem, but proposes only 

vaguely to keep SOL semantic validity and justification in correct inferences apart, which 

at least sounds like forsaking capturing logical reasoning in a formal system. On some 

second thoughts by Shapiro cf. Shapiro 2003. 

It may also be worth reminding here that the non-standard models of PA, used as toy 

examples of a side-effect of compactness in introductory logic classes, have the unnatural 

features that “+” and “*” cannot be generally recursive in them. 
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By way of comprehension that logic naturally provides U, so that ideally we 

incorporate U at this level (i.e. not at some meta-level somewhere else). 

 

* 

 

Let us, finally, look at another theory beyond the size limitations of set 

theory: Category Theory. 

Category Theory wants to be even more abstract than set theory. Sets are just 

one category among many. According to its ‘official history’ category theory 

was invented as a branch of foundational studies because of the size 

limitations of standard set theory ZFC. One wanted a theory dealing in 

collections which unify all – really all, one might say – of a kind, especially 

all sets, even all categories. 

Many introductory books in category theory – like many in set theory – 

follow a more or the less naïve approach. They introduce a category of sets 

(cf. Lawvere/Schanuel 1991,pp.13-21). This includes a domain and an 

identity map. This domain has to be U and the identity map then has to be a 

function :UU. Thus one seems to have U with its problems (e.g. a function 

:UU{0,1} representing membership). 

Self-reflective category theory distinguishes categories from ‘meta-

categories’. Meta-categories are in some sense ‘larger’. Mac Lane (1998, 

pp.7-26) introduces a category of sets with a ‘universal set’ UC. This is 

defined as the closure of several set building operations: 

(i)  x∈u∈ UC  x∈ UC 

(ii) x∈ UC, y∈ UC  {x,y}∈ UC, <x,y>∈ UC, xy∈ UC 

(iii)  x∈ UC  (x)∈ UC, ∪x∈ UC 

(iv)  ∈ UC 

(v)  If  is surjective :ab, a∈ UC, b  UC  b∈ UC 

UC  conspicuously is not defined as {x | x = x} and it is explicitly excluded 

that UC∈ UC. 

On closer inspection one sees that the crucial condition (v) corresponding to 

the Axiom of Replacement presupposes a distinction within the realm of sets. 

(v) would be equivalent to the tautological ∧b∈UC ⊃ b∈UC if the 

expression “b” was interpreted on sets in the usual sense only. “b” has to 

range over collections some of which are so that their member are in UC, b 

UC, so that they are sets themselves. (i) – (iv) could be fulfilled by some rank 

V within V. Mac Lane distinguishes ‘small’ from ‘large’ sets. “b” in (v) can 

range over ‘large sets’. UC is a large set comprising only small sets. Therefore 

UCUC. 
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Calling collections with closure conditions like (i) – (v) ‘universes’ invites 

asking for the universe of all universes (i.e. some really universal collection). 

In fact this is a distinction between sets and classes again. UC is closer to V 

as to U understood here. The category of sets is a meta-category then. 

Applying the powerset operation to UC yields a cardinality beyond UC. 

Category theory deals with more of these meta-categories, each dealing with 

a collection that is treated in other theories as a class. Category wants to be 

even more abstract, however, Mac Lane (1998, p. 23) proposing a category 

of all meta-categories or a category of proper classes. This takes up the 

problem that classes in NBG should form a collection, which cannot be dealt 

with in NBG itself.  

These very large collections (e.g. the category of all meta-categories), 

however, play no role in theory building in (applied) category theory. 

The meta-theory of category theory is usually a mixture of FOL and basic 

set theory! 

If – sometimes – category theory is introduced as an alternative to a basis of 

mathematics in set theory (cf. Mac Lane 1998, pp.289-91) more basic 

concepts (like FUNCTION, DOMAIN, PULLBACKS) are needed than ∈ in set 

theory. Supposedly we can easily understand them (only) because we already 

understand their usual sense from a set theoretic context. The concepts SET 

and MEMBERSHIP seem to be more intuitive and elementary. The basic 

axioms of set theory seem to be more natural than corresponding basic 

axioms of category theory as well. 

In its modelling of ‘small’ categories category theory, therefore, can be seen 

as modelling up to a rank V in V. With respect to V and other ‘large’ 

categories, the question of the collection of them resembles the problem of 

the class of classes in NBG or MK. 

What category theory needs can be provided by (paraconsistent) set theories 

with U. Such theories thus, additionally to their other merits, provide an 

option to unify two branches of standard mathematics, to re-integrate 

category theory into set  
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III 

VIRTUAL SETS AND CONSTRUCTIVISM 

 

As the problem of universality cannot be pushed up an ontological level to 

classes, we have to look at set theories dealing with the presence or absence 

of a universal set.  

Quine (1963) offers the ingenious idea of having a set theory with a universal 

set U = {x | x = x} and not really having it at the same time!  

In Set Theory and its Logic Quine tries to set out the common core of 

different conceptions of sets, i.e. he tries to develop as much set theory as 

possible with as little axiomatic assumptions as possible before introducing 

the axioms that set, say, ZFC and NF or NBG apart. One of his main tools 

in this enterprise is his theory of ‘virtual’ sets34. Virtual sets are set 

expressions built by curly brackets and set abstraction (like: {x | x > y  x  

z}) that occur on the right hand side of “”. These set expressions thus are 

used to build statements of the form: w{x | (x)}. Since the language under 

consideration allows for statements like “xy” these set expressions function 

as singular terms syntactically on a par with variables that can be interpreted 

as having some set as value. The crucial point about their virtuality is that 

they cannot be quantified over (in that position to the right of “”). They are 

not members of any set (virtual or existent). Since Quine follows the 

methodological maxim that only those entities are admitted into a theory that 

are quantified over, these set expressions do not stand for or denote entities. 

They are short hand for statements in which conversion has occurred, i.e. 

w{x | (x)} is short – depending on the length of , of course – for (w). 

They are virtual also in the sense that some such expression might be 

quantified over later, so we do not know when we see such an expression 

whether it never materializes into a set later on. They can be quantified over 

indirectly in expressions like: (y)(y = {x | x < 18}  yz). One can thus 

introduce existential commitments piecemeal. One can have true inclusion 

and identity statements for virtual sets without these sets existing as {x|(x)} 

 
34  Quine speaks of  ‘classes’ but uses “class” synonymously to “set“. Martin’s theory 

of belief also works with virtual sets (cf. 1969, pp.123-35). (Glubrecht/Oberschelp/Todt 

1983) combines ideas from the Calculus of Classes with Quine’s theory of virtuality, but 

also adds virtual objects (in some kind of ‘outer domain’ like in Free Logic) as 

denotations for virtual sets! 
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 {x| (x)} means (∀x)((x) ⊃ (x)); and correspondingly the identity of 

virtual sets is a bi-conditional statement. 

Quine starts with a definition and an axiom for “=” ensuring extensionality 

of sets and a pair of weak axioms (providing the existence of  and of pair 

sets, {x, y} for all x and y), which given the framework of virtual sets provide 

the finite sets (only). This framework contains FOL (with a -operator) and 

the usual set theoretic constructions like unions and cuts. It contains the 

identification of objects with their unit sets!35    

Quine’s framework also can express the existence of a set x by “xU” with 

U being the universal set {x | x = x}, which may itself be merely virtual, 

however! U only contains existents, since the “x” left to “|” carries 

ontological commitment. Classes are thus excluded from the theory. 

Existential formulas are needed, since by virtuality not every singular term 

refers, and the usual quantification rules have to be restricted to existing 

objects. 

This resembles Free Logic and free usage of non-referring singular terms. 

Bencivenga (1976) thus tried to turn Quine’s ideas into Free Set Theory 

(FST). In contrast to Quine’s theory FST allows virtual sets to be members 

of virtual and of existing sets. Every virtual set has its singleton. However, 

as FST defines  as the set containing no existents and postulates 

Extensionality as equality in existing members all the singletons of virtual 

sets are identical! All are identical to . Not much is gained so. As Quine 

may allow for a virtual Russell Set FST shows the antinomic sets to be non-

existent. FST disproves the existence of the set of all existing sets, which is 

only virtual in Quine’s theory, but where U  . The virtual set of all virtual 

sets does not exist in Quine’s theory, and it is provable identical to  in FST. 

So FST provides no real progress. [We come back to the usage of Free Logic, 

however, with system APS in chapter V.] 

Virtuality is a powerful idea, as can be seen by its employment in arithmetic. 

Finite sets turn out to be sufficient for standard arithmetic! Each natural 

number can be constructed as a finite set, say the set of its predecessors (the 

predecessor relation being the converse of the usual successor relation). For 

some purposes of arithmetic we need to talk about the set of all natural 

numbers however. Z introduces the set of natural numbers for this purpose 

by the Axiom of Infinity. This need for infinity can be circumvented. The 

decisive idea is to use a virtual set instead of the Axiom of Infinity. The 

Axiom of Infinity uses the successor operation and so ‘looks forward’ 

towards infinity. One may also use the converse of the successor operation 

and ‘look backwards’ instead. We take  as representing 0, as usual. The 

successor function is modelled by the function giving for any x the unit set 

 
35  This is a substantial and controversial assumption. We come back to it later when we 

discuss theories for which this distinction is of outmost importance. 
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{x}. Let us denote the predecessor function by “” and the closure of a 

function  with respect to a set x by “*x”. Now we can define that some 

number x is smaller or equal than a number y by: 

 () x  y  ≝ (z)(yz  *z  z  xz) 

i.e. x is smaller than y if x is present in all sets which contain y and are closed 

under the predecessor function. We can now define ℕ by 

 (ℕ) ℕ is short for “{x |   x}” 

Nothing demands that ℕ is more than virtual! Note that the quantifier in () 

needs only to range over finite sets. The finite sets can be identified at this 

point as sets that contain some number as largest element and are closed with 

respect to the predecessor relation. A further axiom – a finite version of the 

Axiom of Replacement – is added:  

(FR) The range of a function applied to a finite set exists.  

This again yields only further finite sets. By this axiom mathematical 

induction can be derived as the scheme 

 (I) ()  (x)((x)  ({x}))  y  ℕ  (y) 

Given the finite version of replacement, induction and the thus available 

notions of iteration and ancestral the well known arithmetical operations and 

(Peano/Dedekind) axioms for addition, multiplication and exponentiation 

can be derived (Quine 1963: §16).  

Arithmetic can thus be done without infinity, it seems. No explicit 

commitment to infinity has to be introduced in the corresponding core set 

theory. 

Quine’s theory, however, gives way to ever larger infinites when the need 

for real numbers arises, supposing that there is a need for real numbers. 

Rational and real numbers are introduced as sets of sets of natural numbers. 

For these definitions to work (i.e. get beyond the empty set) one has to ensure 

that for arbitrary subsets of ℕ their union exists, and this is an existential 

commitment to infinity. One such axiom of infinity then is: 

(INF)  (x)(x  ℕ  x  U).  

 

The main problem for our topic universality is, on the one hand, again the 

presupposed and non explicit meta-theory. For instance: the quantifier in () 

has to range over the set of all finite sets, and this set, of course, is a non-

finite set. The meta-theory laying down the truth conditions for the 

quantifiers in this set theory has to use an infinite domain. The “x” in the 

definition of the universal set U has to range over all sets.  

On the other hand the idea of mere virtuality itself seems problematic. Take 

the collection of all x such that x = x. By means of virtuality the theory can 
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talk about that collection, but whereas the theory assumes that the items in 

the collection are existent (it even defines existence as membership in U) the 

collection is merely virtual. In case the theory develops in the direction of Z, 

the virtual set U has to stay merely virtual, on pains of deriving the 

antinomies using U in the Axiom of Separation (AS). In this case the 

treatment of universality comes down to its (non-)treatment in Z. In case U 

will be quantified over later (i.e. its virtuality is desolved into real existence) 

one option will a development in the direction of NBG U undergoing 

metamorphosis into a class. The treatment of universality comes down to its 

treatment in NBG, which again means its non-treatment for classes. Another 

option in case U will be quantified over later will be the avoidance of classes. 

In that case, however, we should expect some substantial changes in the set 

theoretic framework (e.g. exchanging Separation for a restricted subset 

building axiom). Prima facie quantifying over U makes U existent and then 

we have: 

U  U 

contradicting the Axiom of Foundation. And we should even have – for a 

start! –  

(U)  U 

which with the immediate (U)  U  yields more strange results. U∈U not 

just contradicts the Axiom of Foundation, but also contradicts the standard 

ways of introducing cardinal or ordinal numbers (as the elements of (U) 

exist, (U) cannot have more members than U, thus, contradicting Cantor’s 
Theorem, (U) has no larger cardinality than U). 

All this seems plainly bizarre (of course only given our standard/iterative 

idea of sets).  What makes this option interesting is that it deals with the 

problem of universality in set theory itself. We preferably explore some set 

theories with universal sets (i.e. universal sets which are more than virtual). 

Quine’s theory is embedded within standard logic and set theory. Virtual sets 

are virtual in the sense of not being real and not yet being real, but within 

reach of stronger axioms. Quine’s standard meta-theory involves actual 

infinity and standard set theory. 

 

* 

 

Intuitionistic ZF (IZF) does not change the picture with respect to U. It even 

allows for a double negation interpretation of ZF. Some constructive set 

theories work with classes and introduce V as well. In this case the objections 

of the preceding chapter apply. Constructive and intuitionist set theories also 

forsake the full Powerset Axiom and may restrict Separation; to avoid re-
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introducing tertium non datur they have to forsake the Axiom of Choice and 

the Axiom of Foundation (cf. Aczel/Rathjeu 2001). Thus they add non-

intuitive features to the problem of the universal set in Z. 

Constructivity in the sense of the Axiom of Constructability 

 (VL)  V = L 

with L being the realm of constructible sets (i.e. the sets which are built by 

separation using a formula  of the language) makes use of the classes V and 

L and is in fact a non-standard version of ZFC+GCH (with restricted 

Powerset, of course). 

A more radical version to the stepwise approach to set existence is (radical) 

constructivism. The constructivist allows only for those sets which either 

have been individually or generically shown to exist. Allowing for schemes 

of existence proofs results in embracing a totality where not all instances 

have been shown individually. Once some such large totality has been 

admitted larger ones result by construction. Nonetheless, as they are under 

construction even the liberal constructivist can work with the idea of a 

growing universe. The realm of mathematical objects grows as our 

constructive efforts enfold. Seen in this light a constructivist may hold that 

there is no universal set as the idea of its existence presupposes the wrong 

idea of an already completely present universe. (This may resemble the 

Kantian undermining of ‘the antinomies of pure reason’, which each 

presuppose – according to Kant illegitimately – a developing series as also 

completely ‘given’.) 

One set of objections to this constructivism focuses on issues of cardinality. 

The sets we (as human kind) have constructed individually are only finite. 

Generic proofs may put an infinity of sets within reach. Again the number of 

thee proof schemes we (as human kind) have constructed will be finite. The 

constructivist’s position seems to fall back into a theory of a merely potential 
infinite or even strict finitism (of no infinity at all). Both positions deviate 

substantially from received, successful mathematics. They carry the burden 

of proof whether they can deliver what the sciences need. Strict finitism may 

commit us, further on, to paraconsistency (cf. Bremer 2007). 

The second set of objections focuses on the current stage of construction. 

Even if construction work continues, at every single stage of construction we 

may ask whether there is a universal set containing all the sets constructed 

so far. At any stage, shouldn’t {x | x = x} exist? All questions concerning U 

thus return, even if they are now aimed at a succession of ever increasing 

universal sets. Non-realism so does not help at each step. 

This obviously applies to a predicative set theory of rank-wise construction 

of sets within an iterative hierarchy (cf. Wang 1970,pp. 559-623). 
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IV 

CONSISTENT SET THEORIES WITH UNIVERSAL SET 

 

On occasion of the 1971 Berkeley symposium celebrating Alfred Tarski’s 

achievements in logic and algebra Alonzo Church, who otherwise did not 

work much in set theory, presented a new system of set theory (Church 

1974). 

Church saw the two basic assumptions of post-naïve set theories in a 

restriction of comprehension to a form of separation (as in ZFC) and in a 

limitation of size (as in NBG). Similar to the criticism levelled against 

Limitation of Size in chapter II above Church regarded Limitation of Size as 

ad hoc (against the antinomies) and ‘never well supported’ as it proclaims a 

stopping point of further structures although classes are introduced (in NBG 

and MK) as collections, which can be quantified over. Church’s set theory – 

let us call it “CST” here – follows ZFC in its idea of separation, but allows 

for collections that are ‘large’ in a way that even the larger transfinite sets of 

ZFC are not. CST does not introduce classes, but introduces a distinction 

within the area of sets. It allows even for U = {x | x=x}. 

CST distinguishes between ‘low sets’, which have a 1:1-relation to a well-

founded set, ‘high sets’, which are (absolute) complements of low sets and 

‘intermediate’ sets which are neither. These labels pertain to the cardinality 

of sets. High sets are in 1:1-correspondence to the universal set U, low sets 

never. Because of the CST version of the Axiom of Choice for a set x which 

is not low every ordinal has a 1:1-relation to some subset of x.  

So the universe of CST may consist only of sets, but not all are well-founded. 

Obviously U∈U. U is the complement of , so U is the paradigmatic high 

set.  is well-founded, and, of course, ∈U. The constant predicate “wf( )” 

expresses the property of BEING WELL-FOUNDED, defined in the usual sense 

(using some order relation “<”): 

(∀x)(wf(x)  x= ∨  

(∀y)(y  x ⊃ (y   ⊃ (∃z)(z∈y ∧ (∀w)(w∈y ⊃ z < w))))). 

CST can be phrased as a second order system, quantifying over single- or 

two-argument open formula . One could understand this second order 

quantification as using classes, but only given a full-blown second order 
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semantics [cf. Chap. II]. One could use schemata instead (i.e. having only 

free variables for open formula), as in ZF. We follow the first option here 

and make CST a second order theory.36 

The CST axioms are: 

• Extensionality, Pair Set, Sum Set, Infinity as in Z 

• Choice: (∀R)((∀x)(∃y)R(x,y) ⊃ (∃)(∀x)R(x,(y))) 

• Product Set: (∀y,z)(y∈z ⊃ (∃u)(∀x)(x∈u  y∈z ⊃ x∈y)) 

• Separation, Powerset, Replacement restricted to a condition “wf(x)“,  

e.g. Axiom of Powerset:  (∀x)(wf(x)⊃(∃y)(∀z)(z∈y  z  x)),  

Axiom of Separation:   (∀x,F)(wf(x)⊃(∃y)(∀z)(z∈yz∈x ∧ F(z))    

[where “y” is not free in “F”] 

The Axiom of Product Set allows having a substitute for separation in high 

sets. What is missing is the Axiom of Foundation of ZF. 

These axioms of CST are strong enough to yield ZF. Dropping the non well-

founded sets one gains a ZF universe. The two theories are equi-consistent 

(cf. Church 1974, §5). And without violating this relative consistency CST 

can be extended by axioms which go beyond ZFC. These are: Strong Choice 

(that U can be well-ordered), Cardinality Axioms (that there are cardinal 

numbers in the sense of Frege and Russell for all well-founded sets) and 

especially the Axiom of Complements: 

 (∀x)(∃y)(∀z)(z∈yzx). 

The existence of absolute complements and the existence of U make CST a 

more natural set theory than ZFC, one may argue. 

The argument in ZFC from the Axiom of Separation to the non-existence of 

U and Cantor’s Theorem pose no problem for U and (U) for the same 

reason: the Axiom of Separation and the Axiom of Powerset are restricted to 

well-founded sets. 

The argument to the non-existence of U [cf. Chap. I] now establishes that U 

is not a well-founded set. We knew that before. As U is not well-founded we 

do not have (U) in the first place.  

One might now argue: So, in CST as well, there are some collections which 

are there – in this case inter alia the collection of all subsets of U, which are 

obviously existent if U is – but cannot be collected into a set; some 

collections which should exist, like (U), do not exist, because they are too 

 
36  Remember that in a full blown second order setting the Axiom of Choice is not 

equivalent to the Well-Order Principle. In fact the Well-Order Principle is not a theorem 

of ZFC2 (cf. Shapiro 1991, pp.106-108). Neither the presence of the Axiom of Choice 

nor the presence of Foundation implies that all sets can be well-ordered in ZFC2. 
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large, just as in NBG set building operations cannot be applied to classes. 

Like NBG and MK tell us not much about classes, CST uses ‘large’ sets, 

but large sets cannot do much, since they are not subject to Separation or 

other set building principles. 

This criticism, however, should be kept apart from a similar criticism 

levelled against NBG. In fact, all subsets of U are collected into a set – U 

itself. What cannot be done is separating a set (U) from U. The same 

applies to the ordinals: U is a set in which all ordinals are collected, but – on 

pains of re-introducing the Burali-Forti antinomy – we cannot separate a set 

which collects only the ordinals. So does CST make some progress in 

comparison to NBG? On the one hand CST can avoid using the second 

ontological category of classes, with all its problems. On the other hand NBG 

can collect just the ordinals into their own proper collection, albeit a class. 

NBG cannot introduce (V), as CST cannot introduce (U). 

It is true that although the principal idea behind CST was rejecting 

Limitation of Size, CST exhibits some shadow of Limitation of Size: All 

high sets are by definition of the same size as U, just as in NBG all classes 

are of the same size as the class of sets. 

 

* 

 

The widest known set theory with a universal set U – for which we have 

UU – is Quine's NF (from his paper "New Foundations of Mathematics", 

1937). NF is Quine’s set theory with a universal set that is not just virtual is 

NFU. 

NF works by Extensionality and a Comprehension Scheme that is not as 

restricted as in ZFC.  

Quine's NF Comprehension Scheme uses the idea of stratified formula 

(similar to the simple theory of types): 

   (y)(x)(x  y  (x)) 

where "y" is not free in  and  is stratified. A formula is stratified if the set 

on the right hand side of "" is of a higher level than that on the left, and its 

definition does not include that on the left. A test for stratification consists 

in level assignments for sets or in trying a translation into the simple theory 

of types. The language of NF itself is not typed, thus avoiding duplication of 

structurally identical sets at different levels, but NF uses the stratification 

test to avoid the antinomies. NF is equiconsistent with the simple theory of 

types supplemented with the full ambiguity scheme, which asserts that a 

formula  is equivalent to formulas 1, 2 … structurally similar to  with 

type levels uniformly raised by 1, 2 … 
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NF has the power to introduce Pairing, (Absolute) Complement, Powerset, 

and Union as instances of Comprehension. 

NF allows U = {x | x = x}, since “x = x” is a stratified formula. {x|x∈y} can 

be stratified, defining the so-called ‘essence’ of an object (the collection of 

all its properties). “|x| = |{,{}}|” is stratified as well, so natural numbers 

(in this case: 2) can be understood in Frege’s way. Stratification excludes, 

however, the usual definition of an infinite set (as in the Axiom of Infinity 

in Z). One meets in proofs and constructions in ZFC many unstratified set 

definitions. NF has to forsake these sets or has to introduce workarounds. 

Cardinal numbers and ordinal numbers come apart (cardinal numbers are not 

special ordinal numbers as in ZFC). 

Non-stratified formula can be used in NF (this is different to Type Theory), 

but they cannot be used to define sets. Since non-stratified formulas can be 

used in NF one does not need a universal set or an empty set for every level 

(as in Russell's Type Theory) to have well-formed formula. 

The antinomies – especially the (original) Russell Set – are avoided, since 

the corresponding open formulas in the Comprehension Scheme are not 

stratified. NF itself is not known to be consistent. NF with the Axiom of 

Counting, which says that a cardinal number is equal in cardinality to its 

singleton image, can prove the consistency of Z. No relative consistency 

proofs to ZF are available. Note that instances of Replacement are not 

stratified. Some subsystems of NF have been shown to be consistent (cf. 

Forster 1992, Holmes 1999). 

UU means that Cantor's Theorem does not hold (in general) in NF; but the 

set of unit sets of its elements is smaller in cardinality than U itself! The usual 

proof of Cantor’s Theorem defines a set y∈(x) relative to a supposed 

bijection  between x and (x) as y = {z|z∈x ∧ z(z)}, which is not 

stratified. In NF one can define, however, y = {z|z∈x ∧ z({z})}, which 

is stratified with  being a supposed bijection between the set of singletons 

of z∈x and (x). By the usual indirect argument one sees that there is no 

bijection between {z|z={w}∧w∈x} and (x), which means |(x)| > 

|{z|z={w}∧w∈x}| = |1(x)|. As (U)  U we have |U|  |(U)| and thus 

with the previous inequality we know that the cardinality of the set of 

singletons of elements of U is smaller than |U|! |U| > |1(x)|. That could 

mean that not all elements of U possess a singleton: although we have the set 

of all singletons in NF, as {x| (∃y)(x = {y})} is stratified, not all objects seem 

to have a singleton. This cannot be the solution. Comprehension provides a 

singleton for any object z: “x∈y  x = z” can be stratified. Contradiction is 

avoided finally by the non-existence of the function which maps any object 

to its singleton. This function does not exist even though every object has its 

singleton! 
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NF has other highly controversial features like the existence of infinite 

descending chains of cardinals, what conflicts with the Axiom of Choice, 

which thus doesn't hold in NF, which again implies – even in the absence of 

an Axiom of Infinity – that the universe of NF has to be infinite, since all 

finite sets can be well-ordered. The universe of NF, supposedly U, cannot be 

well-ordered then. NF might be consistent, though, with the claim that all 

well-founded sets can be well-ordered. Some functions (like the successor 

function) are not part of the universe – so where are they? 

One can extend NF by introducing classes. In fact if one denies in NF 

Rosser’s Axiom of Counting [see above] one can prove the existence of non-

set collections which are finite! Indeed a ‘strange landscape’ (Forster 1992, 

pp.29-32). 

If one restricts the set building axioms to sets and uses unrestricted class 

comprehension one arrives at Quine’s system ML (cf. Quine 1963, §§40-

42). The problems the system NF has with unstratified induction and its 

incompatibility with the Axiom of Choice are resolved then. There is a class 

of all sets, ∪U, and Cantor’s Theorem does not apply to it, as it is no set (i.e. 

has no powerset at all). Apart from resolving these problems classes play no 

constructive role in ML. Obviously we find ourselves in a system very 

similar to MK, and corresponding criticism applies here [cf. Chap. II]. 

 

* 

 

A version of  NF that tries to avoid many of the peculiarities of NF is NFU 

(NF with urelements), developed by Randall Holmes (2005). NFU is built 

from NF by adding urelements and restricting extensionality to non-empty 

sets, introducing  by an axiom. One may think of it as a subsystem of NF 

that allows only such models which contain the urelements. 

NFU is consistent! It is consistent with the Axiom of Choice!  

NFU is an extremely strong set theory. It can provide models for ZFCU by 

having very large cardinals (strongly inaccessible cardinals). 

By working with a longer (finite) list of simple axioms (like Extensionality, 

Complements, Unions, Singletons, Cartesian Products, Converses, Domains, 

Projections, Singleton Image of a Set, Choice (!), Infinity…) Stratified 

Comprehension can be proven as a theorem! 

The universal set is provided by its own axiom:  

(U)  {x| x = x} exists.  

U contains all sets as elements. All sets can be well-ordered, which is 

equivalent to the Axiom of Choice. So U can be well-ordered, in contrast to 
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U in NF. By the existence of U, the Axiom of Complements and Stratified 

Comprehension absolute complements exist. 

NFU also has its peculiarities: urelements, atoms and ordered pairs (!) are 

taken as primitive. One wonders what is supposed to be ‘in’ the ordered pair 

<x,y> if not x and y. And the NFU Axiom of Ordered Pairs contains the 

standard identity condition on ordered pairs without saying that an ordered 

pair is a set. The Axiom of Pairing of Z looks more natural. 

More problematically: [∈], {<x,y> | xy}, does not exist, the existence of 

[∈] leading to antinomies.37  Whereas we thus have a set U, which may stand 

in as the extension of the predicate “set”, we have no extension for the 

membership relation, although [∈] looks as natural as U. Interestingly [] = 

{<x,y>| x  y} exists. So in many cases “{x}y” may substitute for “x∈y”. 

The non-existence of [∈], which, of course, entails [∈]U, entails that the 

membership relation is not modelled by U (U has no element corresponding 

to it), so that U cannot be a model for NFU itself. So as with the standard set 

theories ZF, ZFC, although working with a universal set, NFU has to look 

outside of itself for models. If the universal set is really universal, where 

should that outside be? We seem to be back to larger cardinals or similar 

collection like entities or some hierarchy [cf. Chap. I & II]. 

Not every supposed set exists, e.g. the set of all Cantorian ordinals. This is 

not better than in ZF. Some collections (like U) which do not exist in ZFC 

can exist in NFU, but as NFU does not distinguish sets from classes, some 

collections (like that of Cantorian ordinals) which exist in NBG do not exist 

in NFU. NFU can be viewed as trying to capture some middle ground 

between the other systems. This yields its own peculiarities. 

Especially problematic is that some version of Cantor’s Theorem is 

provable. The large sets (like the set of ordinals or U) in NFU have the 

strange property of not being equinumerous to their singleton images! How 

can that be? Although every object has a singleton (by the Axiom of 

Singletons), just as in NF the function giving the singleton to every object 

does not exist.38   

|1(U)| < |U| seems to contradict the Axiom of Singletons, a provable 

contradiction only being avoided by the non-existence of a general singleton 

function (cf. Quine 1963, p.293). We have – so to say, in analogy to 

 
37  Proof (Outline). If [∈] exists, so does its complement ─[∈] by the Axiom of 

Complements. [=] = {<x,y> | x = y} exists, since “x = y” is stratified. Then the cut of [=] 

with ─[∈] exists, and this cut is a cousin of the Russell Set: {<x,y> | x = y ∧ x  y}. 
38  Proof (Outline). If the function :U→1(U) existed, extensionality of the singleton 

would yield a function -1, so |U|  |1(U)|, which contradicts the Cantorian argument to 

|1(U)| < |U| (given above with respect to NF). ◼  

Holmes (2005, pp. 109-110) provides another proof which relates to stratification. 
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Separation restricting Comprehension in Z – restricted singleton 

construction! 

So a corollary of the non-existence of the (general) singleton function is that 

the cardinality of the set of singletons of members of U, |1(U)|, is less than 
the cardinality of U. This leads in NFU to the distinction between ‘Cantorian 

sets’ x with |x|=|1(x)| and ‘non-Cantorian sets’, which resembles other 

limitation of size distinctions. 

These cardinality issues lead to Specker’s Theorem (cf. Holmes 2005, 

pp.132-34): 

 | (U) | < |U| 

which is read as proof that there are (many, many) urelements/atoms besides 

sets in U. Atoms, which have no members, are not elements of (U), which 

contains all subsets of U, but not non-sets like atoms. If there are no atoms 

one expects for a system with a universal set U that one has |(U)|=|U|. In 

fact most objects in U in NFU then have to be atoms or pairs (i.e. ordered 

pairs not reducible to sets).  

Unlike some version of NF in (Quine 1963) atoms are not identified with 

their singletons in NFU. As mentioned, ordered pairs are also objects in their 

own right besides sets. Ordered pairs can be taken as atoms in NFU as no 

claim with respect to composition – only with respect to their identity 

condition – was made. Specker’s Theorem mirrors this conception. 

Again: 

Specker's Theorem for NFU asserts that most entities in U are not 

subsets of U, which means most of the universe has to consist of 

urelements! 

So: in all known models of NFU |U| > |(U)|! All relations are subsets of 

UU, and all functions :UU should, if they are allowed to exist, 

themselves be sets of ordered pairs, thus be elements of U, thus be available 

as their own arguments, thus sometimes be forbidden to exist as sets at all in 

a consistent setting (e.g. a function of negative self-application). NFU itself 

can have models only in a realm which possesses properties quite different 

from what we expect of sets. NFU, so, deals not just with sets. In fact the 

non-sets vastly outnumber the sets in any model of NFU. Ideally the non-

sets contain just the urelements, but by the argument above concerning the 

Axiom of Singletons we should expect there to be a collection containing the 

ordered pair of any x and its singleton, but this collection cannot be a set in 

NFU. A crucial question is whether NFU can at least recapture ordinary sets 

– ZFC-like entities – as a sub-domain. Even though this is possible, 

however, we regain simply ZFC as a sub-universe – and are none the wiser 

with respect to our universality problem, as U, because of its behaviour in 

NFU, cannot be part of that recaptured realm. U is not ‘Cantorian’. Even the 
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ordinals of NFU cannot be well-ordered in a set model of NFU! Holmes does 

not introduce proper classes into NFU, but admits their existence, 

supposedly objects of a broader theory (cf. Holmes 2005, p.50). NFU is not 

truly universal, as well. 

 

NFU, thus, may provide a lot of machinery to do ordinary mathematics, the 

gain with respect to our set theoretic intuitions brought by having a universal 

set U, however, seems to be more than lost by the consequences of Specker’s 
Theorem and the absence of [∈]. 
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V 

PARACONSISTENT SET THEORIES  

WITH A UNIVERSAL SET 

 

ZFC, NF/U, even NBG and MK forbid the existence of collections which 

intuitively should be there as all items to be collected are there: be it not just 

U, but the set of all ordinals, [∈], the general singleton function, the pair of 

the class of ordinals and the class of cardinals etc. Maybe these collections 

are not sets, set theory only dealing with sets. Mathematics, maybe, has no 

practical use for other collections. Maybe – maybe not. If some theory saves 

the intuition that these collections are collectible this could furnish it with a 

crucial advantage over its competitors. 

In Z there is neither an unrestricted comprehension axiom or schema nor a 

universal set. Paraconsistent set theory regains both.39 

Apart from semantic closure set theory is one of the main motivations for the 

strong paraconsistent approach (so-called ‘dialetheism’), which accepts both 

that there are some true contradictions as well as the existence of inconsistent 

objects. The consideration starts with the simple question: What is a set? 

The standard account of concepts in FOL semantics goes like this: What 

does “( ) is a tree” refer to? It refers to the set of all trees. A concept/property 

 
39  Whereas in the other paragraphs common knowledge of standard logic was assumed 

we have to divert in this paragraph several times to outline the basics of the involved 

paraconsistent logics or theories. In most cases only a rough sketch is provided to save 

space. There are excellent introductions to Relevant and Paraconsistent Logic (and 

paraconsistency in general) on the market. Brady (2006), Priest (2006) and Routley 

(1980) supply in-depth coverage of their respective systems, semantics and theories. The 

preferred system in this chapter, APS, is outlined in somewhat greater detail, as it cannot 

be found elsewhere. Therefore in this chapter additional schema are used which show the 

syntactic type of expressions more clearly: “á”, “é” are a schema for individual terms, 

“P” is schematic for some general term, “R” for some relation. “A”, “B”…(sentences), 

“G( )”, “F( )” … (general terms), “a”, “b”… (singular terms) are abbreviated expressions 

of the formal languages themselves. We allow rules to use these expressions. In case rules 

or axioms involve no schemata but abbreviations the systems are understood as 

containing rules of uniform substitution into an appropriate syntactic type, excluding, of 

course, substituting into logical constants (like “=” or the existence predicate “E!( )”). 
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is understood if we understand what its extension is. Now, what is a set? It 

cannot be the extension of “( ) is a set”, since this extension would be a 

universal set, but there is none in Z, the standard set theory. So in standard 

meta-theory there is no set/extension corresponding to our usage of “( ) is a 

set”. For restricted usages (sets of some kind, cardinality, order etc.) there 

are sets, but one cannot speak of sets in general. Standard set theory seems 

using a fundamental notion that can at best be partially explained by this 
theory! This runs against our intuitive understanding of “set”.  

Naïve Comprehension expresses not just naivety, but the intuitive idea of 

collecting objects with respect to some condition or property. Especially 

“x=x” looks innocent enough to warrant a collection. 

And the absence of a universal set is not just a problem of understanding 

what a set is. Some set theoretical explanation of other concepts make use of 

a universal quantification about sets (cf. Priest 2006, pp.28-37). 

If one defines: 

 ⊧ ≝  follows from a set of premises   if and only if  

  every interpretation that makes all   true makes  true. 

one talks about any interpretation. And the domain of an interpretation is 

arbitrary. It may be a set of arbitrary high rank. So the supposed definition 

talks about all sets of an arbitrary high rank (i.e. of the completed hierarchy), 

but in ZFC we can never get at all sets unified! 

So it seems that our understanding of consequence cannot be modelled by 

ZFC. ZFC can only define an incomplete model thereof. 

And if there is no universal set, there is no universal complement of a set. 

Some theories (category theory) want to talk about such sets, however, as we 

have seen. Granting this reasoning some prima facie plausibility calls for a 

closer look at paraconsistent set theories. If the costs of paraconsistent set 

theories add up more than expected, some of the supposedly ‘intuitive’ and 

‘innocent’ claims have to be reconsidered [in chapter VI]. 

 

* 
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Richard Routley was one of the first to introduce. paraconsistent set theory. 

He uses the Relevant Logic DL (cf. Routley/Meyer 1976) 

Axioms: 

(A1)  A → A 

(A2)  (A → B)  (B → C) → (A → C) 

(A3)  A  B → A 

(A4)   A  B → B 

(A5)  (A → B)  (A → C) → (A → B  C) 

(A6)   A  (B  C) → (A  B)  (A  C) 

(A7)    A → A 

(A8)  (A → B) → (B → A) 

(A9)    A → A  B 

(A10)  B → A  B 

(A11)  (A → C)  (B → C) → ((A  B) → C) 

(A12)  A  B → (A  B) 

(A13)  (A  B) → A  B 

Rules: (R1) ,  →    

  (R2)  →   ( → ) 

with the following quantificational extension (Routley 1980, p.290): 

Axiom schema:  

   (A14) (x)P(x) → P(á) 

   (A15) (x)(A → P(x)) → (A → (x)P(x)) * 

   (A16) (x)(A  P(x)) → (A  (x)P(x)) * 

   (A17) (x)(P(x) →A) → ((x)P(x) → A) * 

         [* x not free in A] 

Rules: (R3)  |⎯  |⎯(x) 

  

(Naïve) Comprehension is expressed with a Relevant conditional: 

 (NCR)   (y)(x)(xy  P(x)) 

(NCR) has no restrictions on “P( )” (like “y does not occur in P( )”) so that 

one can have a set y such that xy  xy (taking “( )y” as “P( )”). 

This is a bizarre set of all things that belong to it iff they do not belong to it! 
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Such usages of (NCR) immediately raise the question of inconsistent 

ontology (i.e. whether and where are objects like the set described?). 

(NCR) is no longer well-founded: a set like the Routley Set y = {x | xy  

xy} may contain y itself. (NCR) allows for {x | xx}.40 There is even the 

set y’ = {y | xy  xy} – etc. 

Rephrasing the Axiom of Extensionality using a relevant biconditional 

allows deriving even the Axiom of Choice from it and (NCR). Since also 

irrelevant theorems follow, the Axiom of Extensionality is replaced by a rule 

and a definition: 

 (EXTR) (i) x = y  xz → yz 

   (ii) x = y ≝ (z)(zx  zy) 

This rules allow for the substitution of identicals and defines how identity of 

sets is to be taken. For substitution we have: 

    (SUB) A  B  (A) → (B) 

i.e. if A and B relevantly imply each other than B can be substituted in any 

context  of A for A so that the resulting sentence is still relevantly implied. 

(Different antinomies do not imply each other.) 

(NCR) allows defining sets otherwise introduced by axioms: 

Existence of the empty set : 

 (y)(x)(xy  x=x) 

This set is empty, since even in DL we have: (x)x=x 

Existence of the absolute complement of some set x: 

  (y)(z)(zy  zx) 

x is some arbitrary set here, so that we can have the complement of any set 

we wish. In ZFC there are only relative complements of x (in some superset) 

because of the more restricted Axiom of Separation. 

The antinomies can be derived in this set theory, but the underlying 

paraconsistent logic avoids triviality. 

That versions of the Axiom of Choice can be derived within his set theory 

shows, according to Routley, the realistic character of paraconsistent set 

theory (i.e. the domain is simply there, with all functions defined on it, 

whether we have constructed them from previously constructed material or 

not). If w is any family of non-empty (disjunct) sets v, any set theory with 

 
40   So the Foundation Axiom of ZFC is not part of paraconsistent set theory based on 

unrestricted comprehension. Foundation was a late comer in ZFC any way, has no 

mathematical applications outside set theory, and is dropped in otherwise standard non-

founded set theory (cf. Aczel 1988). 
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unrestricted Naïve Comprehension (like Routley’s theory here, but also like 

APS later in this chapter) can circularly introduce the choice function  

cw = {<v,x>| v∈w ∧ x∈v ∧ ¬(∃z∈v)(z  x ∧ <v,z>∈cw)}  

The anti-foundationalist universe can be well-ordered then.  

 

What about the metalogic of Routley's set theory? Note that Routley’s theory 

is a set theory employing neither many-sorted variables nor working with 

classes. Routley (1980, pp.931-33) extends his logic DKQ by some axioms 

for arithmetic to his paraconsistent arithmetic DKA. He can prove that DKA 

is not trivial, i.e. absolute consistent: (∃)DKA. A system like DKA being 

inconsistent does not meet the condition of Gödel's Second Theorem, so can 

be used itself to prove its own (absolute) consistency. This proof by Routley, 

however, uses a truth functional conditional like that of the paraconsistent 

logic LP. So this proof – because of the Curry Conditions (i.e. conditions 

allowing deriving a version of Curry’s Paradox) – cannot be extended to 

paraconsistent set theory.41  Routley and Brady (1989) nevertheless proved 

the non-triviality of a paraconsistent set theory using a logic with a negation 

semantics in terms of the Routley star * and the ternary accessibility relation, 

which are both highly controversial in being considered artificial by many. 

Brady improved on that situation by proving the non-triviality of an 

inconsistent set theory (i.e. one involving inconsistent sets) with respect to a 

truth-functional dialethical semantics (cf. Brady 2006, pp.242-45), the 

matrixes of which, however, are contrived to the purpose and not as natural 

as the matrixes of LP. He states his set and class theory in his logic DJdQ. 

Relevant Logic based set theories like Routley’s, however, violate the idea 

that sets are extensional. The relevant conditional “” is intensional (usually 

having a possible worlds semantics). By its use in (NC) sets become 

intensional! Limitations of substitutivity with “” carry over to sets. For 

instance x∈y  x∈y ∧  (for some truth ) does not relevantly hold true, 

thus y and {x | x∈y ∧ } although having the same members cannot be said 

to be identical (cf. Priest 2006, pp.253-55). 

 

* 

 

 
41  On LP and the Curry Conditions cf. Priest 1987, 2006, Restall 2000, Bremer 2005. 
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Brady's version of paraconsistent set theory (cf. Brady 2006) also employs 

the ideas behind (NCR) and (EXTR). The underlying logic is DJdQ.  

Axiom schemes:   

  (A1)  A → A 

  (A2)  A  B → A 

  (A3)  A  B → B 

  (A4)  (A → B)  (A → C) → (A → B  C) 

  (A5)  A → A  B 

  (A6)  B → A  B 

  (A7)  (A → B)  (C → B) → (A  C → B) 

  (A8)  A  (B  C) → A  B  A  C 

  (A9)    A → A 

  (A10)  (A → B) → (B → A) 

  (A11)  (A → B)  (B → C) → (A → C) 

  (A12)  (x)P(x) → P(á) 

  (A13)  (x)(A → P(x)) → (A → (x)P(x)) *   

  (A14)  (x)(A  P(x)) → (A  (x)P(x)) * 

  (A16)  P(á) → (x)P(x) 

  (A17)  (x)(P(x) → A) → ((x)P(x) → A) * 

  (A18)  A  (x)P(x) → (x)(P(x)  A) * 

                                                  * [x not free in A] 

Rules: (R1)   → ,     

  (R2) ,      

  (R3)  → ,  →    ( → ) → ( → ) 

  (R4)   (x) 

Meta-Rules: (MR1) If    then also        

   (MR2)  If    then  (x)   (x) 

where in both meta-rules in the derivation    (R4) does not generalize 

on a free variable in . 

Brady invented a semantics of content containment to avoid the unnatural 

possible worlds semantics common to Routley’s systems. The content of  

comprises everything that can be ‘analytically established’ from  (i.e. with 

respect to the meaning of ). Given the semantics of content containment 
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Brady has to use (EXTR), since the content of x = y seems not to contain xz 

 yz. 

In fact Brady's theory is foremost a class theory (not a set theory). Brady 

distinguishes classes for which the two axioms hold and for which sentences 

dealing with them have a relevant logic from sets, whose membership 

sentences obey standard logic! The standard behaviour is needed to have 

enough countable sets in the classes. And not using “” for sets keeps them 

extensional. The classes, however, are intensional and have other identity 

conditions than sets. Classes, which also comprehend sets, are thus in at least 

two respects quite different from sets.  Classes comprehend individuals, sets 

and classes having a property. Brady proposes several comprehension 

schema like 

 x∈{yY |  }   x/y {yY|}/Y  

“y” being free for “x” and  maybe having a free class variable thus speaking 

about its corresponding class itself. Classes are ‘logical’ collections, sets are 

arbitrarily formed well-founded collections. Because of their different 

logical behaviour the null set and the null class have to be different. Like in 

NBG some classes correspond to a set (are ‘classically identical’ to a set, cf. 

Brady 2006, p.183, 311). Not all properties built sets, only those with 

‘classical membership statements’. The collection of well-founded sets, for 

instance, cannot be a set itself. Brady’s theory thus consists of two parallel 

sub-theories: one for sets and one for classes. Ordered pairs are – like in NF 

– taken as primitive as well! Numbers are also distinct, since they are not 

reduced to sets! 

Brady has proved his system of set and class theory to be non-trivial and 

even consistent in the narrow sense of not  and (¬), but possibly (  

¬), on the condition that large parts of ZF are consistent. 

Brady's version of paraconsistent set theory does not contain all of the 

antinomies and ‘only’ keeps them from spreading triviality elsewhere. Some 

of the antinomies do not occur. In case of the Russell set one can prove RR 

 RR. To get to the explicit contradiction RR  RR once needs either 

the Law of the Excluded Middle or Negation Introduction. Both are absent 

in DJdQ. Thus given the validity of RR  RR only one can chose to 

make them both true or both false. Something similar holds for Curry's 

Paradox, since Contraction does not hold in DJdQ. Brady works by rejecting 

Excluded Middle and claims that this is not ad hoc to avoid the antinomies 

like R∈R ∧ RR. He argues, however (cf. Brady 2006, pp.40-41), for the 

rejection of Excluded Middle by reduction starting from the observation that 

otherwise antinomies were provable. Comparing restricted comprehension 

(like Separation) or restricting negation (in giving up Excluded Middle) one 

may well argue that NEGATION is an even more central concept and not to be 

messed with lightly. In fact Brady rests his case on his logic DJdQ in which 
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Excluded Middle fails and negation is taken as an intensional 

connective/operation. The majority of logicians doubt that, as we seem to 

understand negation naturally in terms of truth, not meaning or content. 

Brady’s approach thus leads to the broader topic of negation, which cannot 

be taken up here. The burden of proof of building a viable set theory only by 

messing with the extensionality of negation rests with accounts like Brady’s. 

Since Brady distinguishes sets from classes he restricts the validity of 

Cantor's Theorem to sets, avoiding the antinomy that the powerset of the 

universal set has to be within the universal set and at the same time larger 

than the universal set. The sets are collected into a class (cf. p.301). After all 

Brady’s theory turns out to be similar to theories like MK or Ackermann’s 

set theory [cf. chapter II]. The collection of all sets is a class. Some classes 

are even within sets (are members), but these are only the classes 

corresponding ‘classically’ (i.e. in standard logic) to sets. Classes are not 

comprehended into a universal class of all classes. Brady’s theory thus does 

not make progress in comparison to those theories with respect to our quest 

for a truly universal collection of all collections, or at least a set of all sets. 

 

* 

 

One may try to gain both a paraconsistent treatment of antinomies and a 

substantial amount of ‘classical recapture’ by adopting an adaptive logic, 

extending it with the two basic set theoretical rules. Ideally the resulting set 

theoretical logic should combine the basic power and many of the results of 

straightforward paraconsistent set theories (like Routley’s or Brady’s) with 

a severe restriction on reasoning with or multiplying inconsistent objects. It 

should avoid classes. 

The base logic may be the adaptive version of LP (Priest’s so called 

“Minimal Inconsistent LP”, 1991) with standard quantificational extensions 

giving ALPQ (Adaptive LPQ). Since set theory needs identity one in fact 

needs ALPQ=. LPQ= however has a too weak concept of identity, so we 

need some restrictable but more powerful rule. 

We have to introduce some basic ideas of adaptivity first. Adaptive logics 

(and proofs) derive consequences from a premise set, but are adaptive in that 

they retract some consequences if their derivation crucially depended on the 

inconsistency of the premise set. 

Retracting in the process of reasoning from a premise set cannot be 

completely avoided, since there is no general algorithmic procedure (for just 

any logic) to test whether  or   {} is consistent. So we often extend our 

premise set  by a new assumption on the supposition that this extension is 

consistent, although it sometimes turns out not to be. Especially if ⊢ 
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depends on ⊬  and no negative test is available for ⊬, then we have 

even no positive test for ⊢. (The derivability of  may depend on the 

absence of  if say  states some exceptional condition on employing some 

rule to derive .) Retraction is of most interest with respect to internal 

dynamics, since given one and the same premise set the sentence  may be 

derivable at some stage and retracted later.  then might not belong to the 

final consequence set, but it appeared to during some stages of the reasoning 

process. An adaptive logic is characterized by two logics:  

(a) The Upper Limit Logic (ULL) allows for the unrestricted application of 

logical rules to derive the most consequences possible. Typically ULL is 

(standard) FOL;  

(b) The Lower Limit Logic (LLL) is chosen to model some type of restricted 

reasoning. In our case it is a paraconsistent logic, i.e. a logic that blocks 

the application of some rules of standard logic.  

The adaptive strategy is the way to handle the management of restrictions 

and the corresponding retractions. An adaptive logic generates a set of 

consequences of an (inconsistent)  that can lie between ConLLL() and 

ConULL(). The idea of adaptation is therefore: Think of some critical rules 

as applicable and make exceptions only if one of the premises is known to 

be inconsistent (or problematic in some other ways to be explained below). 

Since we do not know beforehand which premises are consistent, we may 

employ these rules incorrectly. That is why there is retraction. 

The application of that rule is retracted then. All consequences of that 

application are retracted as well. Given a premise set  one likes to know 

which of them may be abnormalities. Abnormalities here are, for instance, 

formulas of the form   . Some premise sets might be such that we know:

  

(1) (A  A)  (B  B)  

whereas neither disjunct is a consequence (so far). So maybe each of them 

or either “A” or “B” behaves abnormally. The abnormalities form a set . 

“Dab()” abbreviates the disjunction of (  ) for all   . “Dab()” 

then expresses that at least one of the premises in  is abnormal. “Dab” 

means “disjunction of abnormalities”. We are looking for minimal Dab-

formulas (since the less disjuncts a Dab-formula has the more premises we 

have excluded as suspects). Besides the formulas appearing in a Dab-formula 

there might be formulas which are already known as being abnormal.  

In general:    ⊢LLL(  Dab())  iff   ⊢ULL   

Here  contains the formulas on the consistency of which the application of 

some rules used in deriving  depends. One can follow the Minimal 

Abnormality strategy, which with respect to (1), for example, assumes that 

once we consider the one abnormal we can take the other as normal (i.e., we 
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can derive more consequences, since less exceptions are now operative). If 

at some later stage in a proof one can derive one of the disjuncts in (1) [in 

general in: Dab()], then (1) [or Dab()] is no longer minimal. So this Dab-

formula is replaced by one stating that derived inconsistency. Retractions 

based on the supposed inconsistency of one of the other disjuncts are taken 

back then (by marking/unmarking lines in the proof, see below). 

Proofs look like Natural Deduction Proofs with a further column: 

n.<k,...> A Rule, m, l {B} 

We number the lines and include in "<  >" the premises a line depends on, 

then follows the formula, then a column naming the rule applied to get this 

line and the lines used in that application. The fifth column contains the set 

of formulas (possibly empty) on the consistency of which the derivability of 

the formula depends. These sets are called “conditions” (or 

“presuppositions”, see below). 

Conditions obey the following abstract rules: 

(RU) If 1... n ⊢LLL , then from  1... n on the conditions 1 ... n 

derive  on the condition 1  ...  n . 

The rule (RU) concerns rules of Natural Deduction which do not require in 

LLL the consistency of the ingredient formulas.  just inherits the 

conditional dependencies. 

Rules requiring such consistency operate on 

 (RC)  If 1... n ⊢LLL(   Dab(m), then from  1... n on the   

  conditions 1 ... n derive  on the condition m  1  ... n  

In this case consistency assumptions for the formulas in m are added. The 

last line of a proof is the stage that the proof has arrived at. Now, if one of 

the formulas in the condition gets to be known as non fulfilling the essential 

criterion (here: consistency) the line is marked. The marking rule of the 

Minimal Abnormality strategy says roughly: If for   i,  occurs in some 

Dab-formula, then line i is not marked because of that Dab-formula if there 

is another disjunct of that Dab-formula which is taken as unreliable. Lines 

that depend on a marked line have inherited the condition by either (RU) or 

(RC) and are, therefore, marked as well. Depending on the strategy – or the 

premise set – a line can get unmarked later, even in case of the reliabilist 

strategy. 

"< >" notes the assumptions a line depends on. We note the result of a 

(vertical) derivation in a (horizontal) formula by putting the assumptions 

mentioned in the dependency set of the last derived line on the left of "⊢". 

 1.<1>  A  PREM 

 2.<2>  A  B PREM 
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 3.<1.2>  B  (E) 1,2 

that is A, AB ⊢ B. 

Instead of simply writing “(RU)”, “(RC)” the detailed rules are given here. 

1.<1>   A  C PREM   

2.<2>  B  A PREM   

3.<3>  D   C PREM   

4.<4>   C  A PREM   

5.<5>   A   C PREM   

6.<1>    A  E, 1   (RU) 

7.<1>   C   E, 1   (RU) 

8.<1,2>   B  Contraposition, 6, 2  {A}   (RC) marked at 10 

9.<1,3> D   E, 3, 7   {C}     (RC) if marked at 10 unmarked at 11 

10.<1,5>  ( A  A)  ( C  C) Dilemma, I, 5, 6, 7    (RU) 

11.<1,4>   A  A E, 4, 7 {C} (RC) 

In line 10 we get to know that at least one of “C” and “A” is inconsistent, so 

lines depending on them get marked. Given a Minimal Abnormality strategy 

or seeing in line 11 that “A” is inconsistent we can blame “A” for line 10 

and unmark the lines depending on the consistency of “C”. The Dab-formula 

in 10 is no longer minimal after 11.  

Given the dynamic character of the proofs one has to distinguish: derivability 

at some stage and final derivability.  is finally derived at line i of a proof at 

a stage s iff line i is unmarked at s, and whenever line i is marked in an 

extension of the proof, then there is a further extension in which line i is not 

marked. This property is (in most cases) not recursive. Even if final 

derivability is not recursive this resembles our actual reasoning where we 

(mostly) lack similar assurance against revision. There is nothing dynamic 

about final derivability. The relative derivability statements (i.e. those 

statements like 

 ⊢((AC)(BA)(DC)(AC))  D given {°C} 

expressing that something is derivable from a (empty) set of premises on the 

given set of presuppositions) are recursive enumerable. So one should not 

exaggerate the failure of enumerability of theorems! 

We built the system for adaptive paraconsistent set theory by using the 

following ingredients: 

• an adaptive version of standard propositional calculus; 

• semantic and consistency operators  
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• quantifier rules in the vain of Minimal Free Description Theory 

(allowing for the use of descriptions, including those that are non-

referring); 

• identity rules that restrict substitution to consistent objects; 

• rules for a stronger conditional, whether we really need this or not; 

• basic rules for modalities; 

• set theoretic rules/axioms. 

Semantic and consistency operators express within the language some of the 

semantic properties of sentences of the language.  

 

A A TA FA A A A •A 

0 1 0 1 0 1 1 0 

1 0 1 0 1 0 1 0 

0,1 0,1 1 1 0 0 0 1 

 

These operators express: true, false, true only, false only, non-contradictory, 

contradictory. 

We call the system resulting from these logical rules with added set 

theoretical rules APS (Adaptive Paraconsistent Set Theory). 

A line that reads 

  n.< >  A 

contains a theorem, since the sentence “A” does not depend on any 

assumption (the dependency set noted within “< >” is empty).  

Theorems can be introduced into derivations at any time.  

[Letters “n”, “m” etc. are used to refer to unspecified line numbers. 

Remember: “A” is an abbreviation, the object language having really 

sentences like “x∈y”, “Ordinal()” etc.] 

To include PC-tautologies, which we know already, we have the rule: 

 (PC) n.< > A PC   

where “A” is any PC-theorem. The column with markings is empty. 

For any other theorems (i.e. already proven APS-theorems) we have: 

 (TH) n.< > A TH    

where “A” is any APS-theorem.  contains the presuppositions. There 

cannot be a list of marked individual constants in theorems. 

To introduce assumptions into a derivation we have the rule: 
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 (AE) n.<n>  A AE  {sat(A)} 

where we define satisfiability presuppositions by the schema 

 (sat) sat(A)  ((A  FA)  (A  TA)  (•A  °A)) 

In case the presupposition later turns out to be violated lines depending on 

the assumption in question have to be retracted (as always). The satisfiability 

presupposition has to be made because the definition of APS-consequences 

excludes the cases in which the premise set is unsatisfiable [see below]. 

Typically assumption in arguments need not be considered really true, but 

satisfiable at least. 

 

Conjunction Introduction has the form: 

 n.<m> A  ...    

 o.<k>  B  ...    

 p.<m,k> A  B  (I) n, o       

 

Conjunction Elimination has the two forms42: 

 n.<m> A  B  ...   

 o.<m> A  (E) n  

 n.<m> A  B  ...   

 o.<m> B  (E) n  

 

Disjunction Introduction has the two forms: 

 n.<m> A  ...    

 o.<m> A  B  (I) n    

  n.<m> A  ...    

 o.<m> B  A  (I) n    

 

 
42  Here and in the following rules "<m>" refers to an unspecific (number) of 

assumptions that the line depends on.  can, of course, be empty; if there are marked 

individual constants they are marked only in the line where the quantificational rule is 

employed, see below. 
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Disjunction Elimination has the form: 

 n.<m> A  B  ...    

 o.<k>  A  ...     

 p.<m,k> B  (E) n,o     {°A} 

 

This is the restricted form of Disjunctive Syllogism. 

Negation Introduction has the form: 

 n.<n>  A AE     

 o.<m,n> A  ...    

 p.<m> A (I) n,o  

If some assumption allows deriving its own negation, then this sentence can 

be stated negated simpliciter (i.e. the status as assumption is discharged, as 

indicated by the underlining in the line using (I)).  The usual form of 

Negation Introduction leads to trivialization in inconsistent contexts, and 

thus cannot be adopted here. 

Negation Elimination has the form: 

 n.<m> A  ...   

 o.<m> A  (E) n    

 

Conditional Introduction (Conditionalization) has the form: 

 n.<n>  A  AE     

 o.<m,n> B   ...    

 p.<m> A  B (I) n,o  

 

This rule mirrors the Deduction Theorem. If the conditionalization is the last 

step of a derivation the restrictions on not having marked individual 

constants in it have to be kept. 

Conditional Elimination (Modus Ponens) has the form: 

 n.<m> A  B  ...   

 o.<k>  A  ...    

 p.<m,k> B  (E) n,o     {°A}  

 

This is the restricted form of Modus Ponens.  

Truth Introduction/Elimination follow the disquotational (T)-schema.43  

Strict Falsity will be a defined notion. The Inconsistency operator is treated 

by rules as well. 

 
43  One may doubt that the operator “T” thus can correspond to “is true” in a substantial 

and especially in an (mildly) epistemic conception of truth, which does not validate   
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Truth Introduction has the form: 

 n.<m>  A ...     

 o.<m>  TA  (TI) n    

 

Truth Elimination is the converse: 

 n.<m>  TA ...     

 o.<m>  A  (TE) n  

 

Falsity Introduction has the form: 

 n.<m>  A ...     

 o.<m>  FA  (FI) n    

 

Falsity Elimination is the converse: 

 n.<m>  FA ...     

 o.<m>  A  (FE) n   

 

Inconsistency Introduction has the form: 

 n.<m>  A  A ...     

 o.<m>  •A   (•I) n    

 

Inconsistency Elimination is the converse: 

 n.<m>  •A   ...    

 o.<m>  A  A  °A  (•E) n    

 

For strict truth we introduce its version of Convention (T): 

 n.<>  A  A  ()   

 

Necessity Introduction (Necessitation) has the form: 

 n.< >  A ...     

 o.< >  □A  (□I) n  

 

A theorem (but not any sentence depending on further assumptions) can be 

necessitated.  

 

T. With respect to the evaluation of formula there is, however, this operator, and it serves 

sometimes the function of “is true”. 
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Necessity Elimination has the form: 

 n.<m>  □A  ...    

 o.<m>  A ...     

 

Since necessity is taken here to be semantic necessity (not natural necessity 

or some more restricted version of necessity) it has to be governed in the way 

of a normal modal logic of the strength of modal system S5. Therefore we 

need two further rules: 

The rule corresponding to the K-Axiom of modal logic has the form: 

 n.<m>  □(A  B)  ...     

 o.<k >  □A  □B  (K) n,o  

The rule corresponding to the S5-Axiom has the form: 

 n.<m>  A   ...    

 o.<m>  □A  (S5) n    

Taking entailment to be semantic entailment in the sense that:  

  A ⊰ B ≝ □(A  B) 

gives us derived introduction and elimination rules for “⊰”. 

Entailment Introduction is a strict form of Conditionalization: 

 n.<n>  A  AE    

 o.<o>  B  AE    

 … 

 r.<n,o> C  ...    

 s.< >       A  B ⊰ C (⊰I) n,o,r   

 

In strict conditionalization all assumptions have to be conditionalized (thus 

we get a theorem to be necessitated to yield the entailment).  

Entailment Elimination is a version of Modus Ponens: 

 n.<m> A ⊰ C  ...    

 o.<k>  A  ...    

 p.<m,k> C  (→E) n,o      {°A}  

We introduce some further connectives by definitions. There are derivable 

introduction and elimination rules then. Within a derivation we use the 

definitions by referring to their name:  

 (D)  A  B ≝ (A  B)  (B  A) 

 (D⊱⊰)  A ⊱⊰ B ≝ (A ⊰ B)  (B ⊰ A) 

 (D)   A ≝ □A 

 (D)   A ≝ A 
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 (D°)  °A := A  A    

We have to give the usual requirements on marking individual terms in case 

of applying Universal Generalization or Existential Specialization within a 

derivation. These are: 

• Terms generalized in Universal Generalization and specialized to in 

Existential Specialization are marked at the right of such a line; 

• The marking also notes the dependencies on other individual terms in 

that line (in the form “a(e)”: “a” being marked depended on “e”); 

• Markings may not be circular (i.e. we do not have “a(e)” and “e(a)”); 

• No term may be marked twice; 

• Marked terms may neither occur in the premises, presuppositions nor 

in the conclusion of a supposed valid derivation. 

In applications of the quantifier rules one also has to meet the requirement 

that by generalising one constant to a variable “x”, “x” will not be bound by 

already present quantifiers. (I) and (I) require further on that “x” and the 

individual term occur at exactly the same places in a given sentence. 

E!(á) says that the object denoted by á exists, “E!( )”, being the existence 
predicate, is a logical constant. Quantifiers refer to existing objects only.44 

We assume that there is something: 

Axiom of Existence 

 n.< >  (x)E!(x) (E!)     

Identity Introduction is valid for any object, existing or not: 

 n.< >  a = a  (=I)     

Identity Elimination (i.e. substitution of identicals) is more critical. It has to 

be restricted to avoid trivilization in a paraconsistent logic with as much 

 
44   Semantically speaking the extension of  “E!( )” is the domain at a world index. As 

we are dealing with sets anyway worlds may be taken as sets containing set theoretically 

modelled facts or states of affairs. Whether one admits possibilia or not is a question to 

be discussed apart from set theoretical assumptions. [There are several techniques to 

avoid a commitment to possibilia in one’s semantics. For the non-modal case one may 

take the interpretation function I on terms to be partial: If I is defined for , |||| is in the 

domain, “E!()” is true, if I is not defined for . “E!()” is false; I interprets P(á) for any 

general term and any singular as true, false or both; complex statements have their usual 

recursive truth conditions (like in LP); variable assignments run over the domain, thus 

providing the usual (paraconsistent) quantificational semantics, even if there are objects 

without names; for any term  “ = ” is true, if I is defined on both  and , the usual 

truth condition for “=” applies, otherwise a value may be assigned at random. In the modal 

case modal expressions have their usual truth conditions (like in S5), possibilia can then 

only be avoided by some construction of an ‘outer domain’ of terms and some ‘ersatzist’ 

construction involving instantiating terms.] 
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expressive power as APS. We have to presuppose that some object is not an 

inconsistent object to apply (=E) to it. We define a consistency predicate “K( 

)” for objects (as a logical constant, of course) to do this: 

 (DK) K(á) ≝ (P)(P(á)  P(á)) 

APS is no 2nd order system, but we may employ (DK) in that we note K(á) 

in the presupposition list of some line if for the object named á we should 

not have a line with an instance of the scheme: P(á)  P(á). A line with 

K(á) presupposed will be retracted once we derive P(á)  P(á) for some 

predicate. 

 

Identity Elimination then takes the form: 

 n.<m> P(á)  ...     

 o.<k>  á = é  ...    

 p.<m,k> P(é)  (=E) n,o      {K(é)}  

This restriction may block deriving theorems concerning inconsistent sets, 

like the restriction on (⊃E) blocks theorems concerning contradictions. 

Should we bother? We need not believe that inconsistent sets are like 

consistent sets. After all the point of APS may be seen to rest in dealing with 

lurking inconsistent sets in an attempt to have a most naïve set theory for 

consistent sets (i.e. one with unrestricted Comprehension and U). It is not 

obvious that ZFC-like axioms should apply to inconsistent sets. It is not 

obvious - in fact it may be doubted – that our concept set applies in full 

generality to inconsistent sets. APS can handle inconsistent sets if there are 

any. If it turned out that none can be shown to exist (by restrictions on proofs 

like restricting detachment in Naïve Comprehension to consistent set 

defining formula) so the better, we may presume [see below on the Russell 

Set]. The priority with APS lays on realizing a naïve set theory for consistent 

sets. 

Since we want to use description and modal operators we have to provide 

(=E) with a provisio in case descriptions are involved. In modal logic S5 all 

modalities can be reduced to modalities of degree 1. We require as a provisio 

for Identity Elimination: 

In case we have á = é, then: 

if á is a description and é an individual constant, é cannot be substituted 

into a modal context of “”, 

if á is an individual constant and é a description, é cannot be substituted 

into a modal context of “□”. 

The following quantifier rules require following the rules of marking the 

constant generalized/specialized in (I) and  (E), and the renaming of 

variables mentioned before.  
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-Introduction (Universal Generalization) has the form: 

 n.<m>  R(á,é)  ...   

 o.<m>  (x)R(x,é) (I),n    {E!(á)}   á(é)  

Thus the application of (I) requires an existence assumption concerning á, 

since we conclude to a generalization about all existing objects. á is marked, 

here as depending on é. 

-Elimination (Universal Instantiation) has the form: 

 n.<m>  (x)P(x)  ...    

 o.<m>  P(é)  (E),n   {E!(é)} 

 

Since the generalization is (maybe) true of existing objects only the 

application of (E) presupposes that the constant specialized to names an 

existing object. 

-Introduction (Existential Generalization) has the form: 

 n.<m>  P(á)  ...   

 o.<m>  (x)P(x) (I),n    {E!(á)}  

Thus the application of (I) requires an existence assumption concerning á, 

since we conclude to a generalization about some existing objects.  

-Elimination (Existential Instantiation) has the form: 

 n.<m>  (x)R(x,á)  ...    

 o.<m>  R(é,á)  (E),n   {E!(é)}  é(á)  

Since the generalization is (maybe) true of existing objects only the 

application of (E) presupposes that the constant specialized to names an 

existing object. The name of the object is marked in its dependencies in the 

formula in question.  

In case that existence assumptions are explicitly made the existence 

presupposition can be cancelled: 

 n.<m> P(á)  ...    {E!(á)} 

 o.<o>  E!(á)  AE 

q.<m,o> P(á)  (E!C),n,o    

If the existence claim follows from the other assumptions the presupposition 

can be cancelled as well: 

n.<m>  P(á)  ...    {E!(á)} 

o.<m>  E!(á)  …     {E!(á)} 

q.<m>  P(á)  (E!C),n,o    
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Minimal Free Description Theory requires the uniqueness of a description 

with respect to the existing objects only. Otherwise it looks like the standard 

Russellian account of descriptions. We use the usual “”-notation, so that 

“xF(x)” means “the (unique) F”. 

The (MFD)-rule can be stated as the following two ways of term 

interchangability: 

n.<m>  xP(x) = á     ...   

 o.<m> (y)(á=y  P(y)  (z)(P(z)  z=y)   (MFD),n  

 n.<m>  (y)(á=y  P(y)  (z)(P(z)  z=y)  ...    

 o.<m>  xP(x) = á      (MFD),n  

 

The first conjunct in the equivalence states satisfaction of the defining 

property, the second expresses uniqueness. 

In the context of quantificational rules we can now make clear the reference 

to a set of presuppositions above. Adaptive Logics speak of Dab-formula 

and corresponding sets of consistency assumptions. APS notes these 

consistency assumptions as presuppositions to employ some restricted rules. 

Actually the consistency presupposition is "°A". In Minimal Free 

Description Theory usually a conjunct "E!(a)" is needed (e.g. as derivable 

line or assumption) to employ one of the quantifier rules. Since APS is a 

dynamic logic already we need not work with "E!(a)" as a line in a derivation, 

but can note this also as a presupposition in the presupposition set  noted 

on the right. In case of Identity Elimination the presupposition is that we 

have a consistent object. We note this as the presupposition “K(a)” for an 

object a in question. Each of the sentences in the presupposition set has a 

negation. Once the negation of such a presupposition can be derived, all lines 

are retracted which depend on that presupposition (like in the original 

adaptive dynamics). The retraction thus does not only concern the 

disappointment of consistency assumptions (either for a sentence or an 

object), but also the disappointment of existence presuppositions. If the last 

line  of a derivation has a non-empty presupposition set , this means that 

the sentence in that line is derivable from the assumptions noted within “< 

>” given these further presuppositions. 

Let  be the (possibly empty) set of assumptions and  the (possibly empty) 

set of presuppositions in a derivation of .  

We have:  

 () |⎯APS   |⎯APS   
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To save labour and have derivation looking more closely like standard 

derivations we adopt the convention to drop noting  if  is empty.45  

The relative derivability statements, i.e. those statements like 

  ⊢APSG(xF(x))  (a = xF(x)  G(a))  given {K(a)} 

expressing that something is derivable from a (empty) set of premises on the 

given set of presuppositions, are recursive enumerable. Noting 

presuppositions explicitly clutters derivability statements, one may 

complain. This is due, however, on the universal employability of APS. 

Standard logics have all these caveats implicitly understood as they 

presuppose a well-behaved restricted area of applications. 

 

Consequence in APS may be defined:  

(⊨1)  ⊨APS      iff   

in case that all  are true at least, then  is true at least. 

Nothing needs to be said concerning the case that any  is false only. One 

has not to hold that then a consequence relationship holds. To do so would 

endorse non-relevant inferences.  

To do so may come close to reintroducing ex contradictione quodlibet, as 

well. A and A are incompatible, so both can never be true at the same 

time, so allowing for Irrelevant consequences would yield, for example:  

 (*2) A, TA ⊨APS C 

for any C. 

To insist that the “in case” has to be read as material implication as in PC 

just begs the questions against a relevant meta-theory! 

An improved relevant definition of consequence in APS might be: 

 (⊨2)   ⊨APS   iff  there are models such that all  are true at 

least, and in case that all  are true at least in a model, then  is true 

at least in that model. 

The existence condition rules out the Irrelevant cases and (*2).  

A consequence relation obtains if and only if all of the non-empty set of 

models that make the premises at least true make the consequence at least 

true. What models are has to be explained in our universal system APS itself. 

As always ⊨ concerns the inheritance of truth. The second version, (⊨2), 

requires some reworking of the proof theory. 

 
45  It may also be convenient to leave most presuppositions, especially satisfiability 

presuppositions, as being understood and return to them only in case of cancellation of 

lines. For the sake of getting to see all the presuppositions or to accustom to the adaptive 

procedures it may be useful to write them down for a while. 
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Changing the definition of consequence this way requires a further book 

keeping of presuppositions, in this case with respect to assumptions. 

In as much as APS has to be correct the basic rules must not support 

consequence claims that go against the definition above. Making an 

unsatisfiable assumption, however, would allow claims like 

 (*3)   A  TA ⊨APS A  TA 

(*4)   A  TA ⊨APS A 

where the premise (set) is unsatisfiable and thus the claims are supposedly 

incorrect. If we consider these claims as incorrect – and not just non-relevant 

– then the first definition of consequence is in trouble, since conjunction 

elimination would allow to derive (*4). The proof theory allows to derive 

something that is not – strictly speaking – a violation of the definition of 

consequence given thus, but only because we deem it non-relevant (the case 

of the assumption on the left being at least true just does not arise, thus it 

cannot violate the condition). This line of reasoning, however, leads to 

accepting (*2) as not incorrect! And this may be too much, even if (*2) is 

not accepted as valid. Still the first definition may be an option given a clear 

understanding of RELEVANCE. Being silent on (*2) as neither correct not 

incorrect, however, violates the otherwise assumed tertium non datur, and 

the meta-theory should not work with another logic than the logic, since a 

truly universal logic can be used as its own meta-logic. 

Clearly, however, the solution for this first option’s trouble is straight 

forward, given the second definition: assumptions (i.e. claims to be 

considered for further consequences) are presupposed not to be true, but to 

be satisfiable. In a paraconsistent semantics even contradictions ∧¬ can 

be satisfiable. 

When applying the assumption rule (AE) we have to use the form 

 n.<n>  A AE sat({A}) 

where we define the satisfiability presuppositions by the schema 

(sat)   sat(Г)  Г has a APS-model where all  are true at least 

Г being a set of assumptions. The set of assumptions Г has to be jointly 
satisfiable. With sat({A}) we note only the satisfiability of an individual 

assumption. If a line depends on several assumptions, the further 

assumptions entering into its derivation also have to enter the set the 

satisfiability of which is presupposed. The presupposition of satisfiability is 

cancelled when Г contains or entails for some A either  

(i)  TA  A or  

(ii)  A  ∆A or  

(iii)  ∆A  FA or  
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(iv)  (•A  °A) 

These sentences are beyond contradictions like ∧¬ in not being 

satisfiable even in a paraconsistent semantics for APS.  

In case the presupposition later turns out to be violated lines depending on 

the assumption in question have to be retracted (as always). In a universal 

logic like APS were the distinction between object and meta-language is 

superseded by the idea of semantic closure we naturally have semantic 

properties (like satisfiability) enter into the syntactic properties of a 

derivation. 

Since we generally have to presuppose the satisfiability of the set of 

assumptions which a line depends on, we may use the convention of not 

especially noting this in ordinary cases, but proceed according to a revision 

rule that all lines depending on an assumption that turned out to be 

unsatisfiable have to be taken back. In fact the additional entry “sat(A)” for 

some premise “A” is redundant in our derivations as we note the 

dependencies in the second column. We just have to recognize that all 

premises mentioned in the second column have to be satisfiable. This is 

different with the other presuppositions, as, for instance, not all premises 

have to be consistent. 

The relative derivability statements with respect to logical consequence (i.e. 

derivability from a set of assumptions) now carry the presupposition that the 

assumptions/premises are satisfiable (in the defined sense above): 

 A  B ⊢APS A  given sat{(A  B)} 

expressing that something is derivable from a satisfiable set of premises. So 

in the next few examples the “sat” is used, but it can be dropped for more 

convenient representation. More generally one could say that in a claim like 

∧⊢APS  it is meant that in case of ∧ being satisfiable  is derivable. 

Here ∧⊢APS  is a general schema, but one need not be committed to 

every instance of ∧ providing a true statement of derivability ∧⊢APS 

 as in case of (*4). 

 

Examples of APS-derivations: 

 

1.<1> G(xF(x))     AE {sat(G(xF(x)))} 

2.<2>  a = xF(x)     AE {sat(a = xF(x))} 

3.<1,2> G(a)      (=E) {K(a),sat(1),sat(2) } 

4.<1>  a = xF(x)  G(a)    (I)2,3  {K(a),sat(1)} 

5.<> G(xF(x))  (a = xF(x)  G(a))  (I)1,4  {K(a)} 
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1.<1> a = xF(x)     AE  {sat(1)} 

2.<1> (y)(a=y  F(y)  (z)(F(z)  z=y)  MFD,1 {sat(1)} 

3.<1> a=a  F(a)  (z)(F(z)  z=a)   (E)2  {E!(a),sat(1)} 

4.<> a=a      (=I)   

5.<1> F(a)  (z)(F(z)  z=a)  (E)3,4 {E!(a),°(a=a),sat(1)} 

6.<1> F(a)     (E)5  {E!(a),°(a=a),sat(1)} 

7.<1> (x)F(x)    (E)6  {E!(a),°(a=a),sat(1)} 

8.<> a = xF(x)  (x)F(x)  (E)1,7 {E!(a),°(a=a)} 

 

1.<1> A    AE  {sat(1)} 

2.<> A    A  PC   

3.<1>   A  (E)1,2 {°A,sat(1)} 

4.<4> A  B  AE  {sat(4)} 

5.<1,4> B   (E)3,4 {°A,°  A,sat(1),sat(4)} 

6.<4> A  B  (I)1,5 {°A,°  A,sat(4)} 

7.<> (A  B)  (A  B) (I)2,6 {°A,°  A} 

 

1.<> ◊A  □◊A  (S5)(I)  

2.<> □◊A  ◊A     (PC)(E)1 {°(◊A  □◊A)} 

3.<>  ◊□A  □A   (D◊)2 {°(◊A  □◊A)} 

4.<>   □A  ◊□A   (TH)   

5.<>   □A  □□A   (E)(I)3,4 {°□A,°(◊A□◊A)} 

6.<6>  □A    AE  {sat(6)} 

7.<6>  A    (□E)6 {sat(6)} 

8.<6>  A  B    (I)7  {sat(6)} 

9.< >  □A  A  B   (I)6,8  

10.< >  □ (□A  A  B )  (□I)9   

11.<>  □□A  □(A  B ) (K)10   

12.<>  □A  □(A  B )   (E)(I) 5,11{°□A,°(◊A□◊A)} 

 

We add to the constants of our language the expression “Set( )” with its 

obvious intended meaning, as well as the usual set theoretical symbols like 

curly brackets, “”, “” etc. and “|” to express set abstracts like {x | P(x)}. 

Set abstracts are terms in the language.  

We have to add the usual definitions like: 

  (D2) a  b ≝  Set(a)∧Set(b)∧(x)(xa  xb)  

  (D< >) <a,b> ≝ {{a},{a,b}} 

Thus “” is taken as primitive.  
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As APS deals not only with sets, but also ordinary objects, we need a set 

predicate “Set( )” to sort out the empty cases when using set principles with 

non-sets. Since in the intended interpretation x  y will be false if y is not a 

set, we have to avoid all the counterintuitive consequences of irrelevant 

conditionals (e.g., (x,y)(xa  yb) is true for any individuals a and b 

without these being identical).  

We use an introduction rule for some of these cases: 

 n.<o>  á = {x | P(x)}   …    

 m.<o> Set(á)∧(∀x)(P(x)  x∈á) (Set),n  

We define the universal set U, as we have done here all the time: 

 (DU)  U ≝ {x | x = x} 

Since we cannot exclude inconsistent objects like a with a  a, it is no option 

to define  as {x | x  x}!  

A better idea is: 

 (D)    ≝ {x | x  U} 

Thus U is truly universal. 

Extensionality of sets can be added as a rule to introduce identity of sets.  

 n.<k>  Set(a)  Set(b)  (x,y)(xa  yb) …    

 m.<k> a = b         (Ext),n  

 

Substitution doing the rest for consistent sets, since both sides of  "" are 

open for substitution.  

Naïve Comprehension is added as rule/axiom schema using the material 

conditional: 

 n.< >  (y)(Set(y)  (x)(xy  P(x))) (NC)   

with no further restrictions. (NC) immediately gives us the existence of  

and U. With (NC), (D) and (Ext) we get: 

• unordered pairs {x,y} by v∈w  v=x ∨ v=y 

• ordered pairs, then abbreviated as <x,y> 

• singletons, {x} = {y | y = x} 

and so forth. Also by (SET) we immediately have: x∈{y| y = x} = {x}. 

 

Given the restrictions on detachment in APS, however, may forbid or retract 

the application of detachment here. Consider, for example, the inconsistent 

object a with a  a. We have 
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 1.< > a  U   a = a (NC), (DU), (E)   

 2.< > a  U   (E), (=I), 1 {°a=a} 

 3.<3> a  a   AE     

 4.<3> a  a  a = a  (E), (=I), 3    

Now, given (4) “a = a” obviously isn't consistent, so (2) has to be retracted! 

That, of course, does not mean that a  U. 

For the Russell Set we have by (NC): (∃y)(Set(y)∧(∀x)(x∈y  xx)); 

naming the set {x| xx} “R” we get by Set “Set(R)” and then by (NC) and 

(∃E): (∀x)(x∈R  xx). So by (∀E): R∈R  RR. We cannot get “R∈R 

∧ RR”, however, as (⊃E) requires a consistent antecedent and “R∈R” 

turns out to be inconsistent. So we have introduced the set {x| xx} but have 

not derived the contradiction showing it to be inconsistent. This may be a 

case of incompleteness for APS: We cannot show all the properties of 

inconsistent sets. On the other hand – why should we bother? Only if we 

assume R to exist as inconsistent set, can we declare APS incomplete, 

supposing, of course, there being no other proof of “R∈R ∧ RR”. The 

issue here concerns only those interested in knowing the structure of 

inconsistent objects, as some dialetheist might be. They had to come up with 

a better system which does what APS does for consistent sets, but can also 

additionally treat more completely of inconsistent sets. Dealing with 

universality APS suffices. 

 

We may allow shorthand expressions for functions: , ’… As we can say: 

(D) Function() ≝ Set() ∧ (∀y)(y∈⊃(∃v,w)(y=<v,w>)) ∧ 

(∀y,y’)(y∈ ∧ y’∈ ∧ (∃v,w,w’)(y=<v,w>∧y’=<v,w’>) ⊃ 

y=y’) 

We define an injective function by: 

(DInjective) Injective() ≝ (∃x,y)(Set(x)∧Set(y)∧ (∀u,u’,v)(u∈x ∧ 

u’∈x ∧ v∈y ∧ <u,v>∈ ∧ <u’,v>∈ ⊃ u = u’) 

Powerset is defined in the usual way by: 

 (D)  (a) ≝ {x | x  a} 

And by (NC) we get for some set w: 

 (∃y)(Set(y) ∧ (∀x)(x∈y  x  w) 

Generalizing on w provides the Powerset Axiom. 

We can define cardinality comparison |a|  |b| now by 

 (D)  |a|  |b| ≝ (∃)(∀x∈a)(∃y∈b)((x)=b ∧ Injective()) 

“>” for cardinalities has then the obvious definition: 
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 (D>)  |a| > |b| ≝ ¬|a|  |b|  

We reason now: 

 1.< > (U) = {x | x  U}  (D),(NC) 

 2.< >  Set((U)) ∧ (U)U  (Set),(DU),(D), 1 

 3.< > Injective({<x,y>| x = y})  (DInjective),(Ext),(NC) 

 4.< > (∃)(∀x∈(U))(∃y∈U)((x)=y ∧ Injective()) (∃I),(D),2,3 

 5.< > |(U)|  |U|    (D),4 

 6.< > (∃x)(Set(x) ∧ |(x)|  |x|) (∃I),(Set),5 

 7.< > (∃x)(Set(x) ∧ ¬|(x)| > |x|) (D>),6 

 8.< > ¬(∀x) (Set(x) ⊃ |(x)| > |x|) (∀∃), 7 

where the last line, (TP1), is the negation of Cantor’s Theorem. The usual 

indirect proof of Cantor’s Theorem does not work in APS (like in many if 

not all paraconsistent logics). If there was another proof Cantor’s 
Theorem would come out as an antinomy! 

We can continue and observe: for a set x there exists by (NC) :x→(x) 

defined as {z | (∃y∈x)z = <y,{y}>}, the singleton map of the set x. By 

reasoning like the proof just considered we can arrive at:  

10.< > |U|  |(U)| 

(5) and (10) combined with the Cantor-Bernstein Theorem 

 (CBT) |a|  |b| ∧ |b|  |a| ⊃ |a| = |b| 

prove  

 11.< > |U| = |(U)|  (∧I),(⊃E),5,10,(CBT) {°((5)∧(10))} 

which contrasts nicely with NF/U.46 

Because the singleton map exists, we can prove: 

 (TP2)  (∀x)(|x|  |1(x)|) 

And since ∈(x) for any set x, 1(x)  (x) for any set x, so for finite 

sets we have:  

 (TP3)  (∀x)(|x| < 0 ⊃ |x| < |(x)|) 

Without Cantor’s Theorem to generate higher cardinalities the APS-universe 

might be rather flat than \/-shaped. 

 

APS contains non-referring singular terms, using a name does not imply that 

the named object does exist. Singular terms naming sets – including set 
 

46  The Cantor-Bernstein Theorem can be proven directly, so the standard proofs are 

available in APS. 
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abstracts! – thus need not refer by just being singular terms. In principle there 

would therefore be the option for non-existent sets being around. These may 

one remind of Quine's ‘virtual sets’ [cf. Chap. III]. Virtual sets, with Quine, 

are set abstracts which are not quantified over, thus not being said to exist. 

APS could provide a place for such virtualities. 

On the other hand (NC) just declares that any set whatsoever (i.e. any set 

defined by a set abstract) exists.  

One may consider whether the introduction of a second set of quantifiers 

(quantifying over possibilia or virtualities as well) might be useful, using a 

quantifier with no existential impact in (NC). Apart from the problems of an 

ontology of virtualities this seems, to me, to be against the spirit of Naïve 

Comprehension, the very point of which seems to be that there (really) is a 

set to each defining condition.  

Unrestricted (NC) gives us 

  (∃y)(∀x)(x∈y  x = y) 

i.e. a set y = {y}. y is its own singleton, thus finite. We have: 

 (T) There are finite self-membered sets. 

This supposedly obvious observation is interesting as is has been conjectured 

for NF that any self-membered set in NF has to be infinite. 

All the ordinals are members of 

 = {x | x is the order-type of a well-ordered set} 

Where, as usual, {<x,R> | <x,R> is isomorphic to <y,R’>} = o is the order-

type of <y,R’> with <y,R’> being the set y with R’ well-ordering y.  is not 

just self-membered, but contains all its own ordinal successors!  contains 

all well-orderings, and for all (infinite, pure) sets there is a well-ordering in 

 as (NC) provides for each (infinite, pure) set a choice function, which can 

be employed to order the set. Finite sets can be well-ordered any way by 

counting. Uncountable infinite sets with urelements (i.e. non-sets) may be 

well-ordered by first ordering the finitely many urelements and then well-

ordering the rest of the set. 

All in APS seems to be a most comprehensive system for paraconsistent 

reasoning including reasoning about sets, recapturing standard theorems for 

consistent contexts and entities.47 

 
47  (Dunn 1988) showed a somewhat disturbing result for non-classical logic and thus 

for non-classical set theory: If one combines a couple of basic and innocent principles for 

the classical connectives and for the consequence relation (like transitivity) with second 

order quantification and conversion principles (for a -calculus like abstraction) then the 

resulting logic (i.e. the set of theorems generated) is an extension of (standard) SOL. This 

means that the full strength – and paradox yielding power – of classical reasoning 

(including Disjunctive Syllogism …) is regained. The systems by Routley and Brady 
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* 

 

Paraconsistent set theory is not only of interest in itself or as formalization 

of naive set theory. It also may serve as the foundation of paraconsistent 

arithmetic. It has to be checked what remains of standard mathematics once 

its foundations in set theory have been restricted to paraconsistent set 

theories! 

Do we need paraconsistency for set theory? 

If the justification for a paraconsistent set theory depends on avoiding the 

antinomies, others approaches that avoid the antinomies might be 

alternatives. Provided they are more natural or coherent that the 

paraconsistent systems. 

If the justification depends on the argument that the notion of set is not clear 

unless we have a universal set, set theories that combine standard logic with 

having a universal set might be alternatives. Again, provided they are more 

natural or coherent that the paraconsistent systems. 

 

An even more decisive point may be keeping unrestricted (Naive) 

Comprehension. That is something that neither ZFC nor systems like NF 

can do. Paraconsistent set theories help Logicism to a second chance. Russell 

and others worried – inter alia – that the Axiom of Infinity does not sound 

like a logical principle, but boldly asserts the existence of specific sets. One 

we have (NC) we get U and , and we can comprehend specific sets as 

subsets of U. There are infinite sets (in Dedekind’s classical definition) as U 

can be mapped to the singleton image of its elements, thus is (Dedekind) 

infinite. 

Neither does everyone like the distinction between classes and sets. A theory 

not making this difference might be preferred.  

 

 

outlined in the preceding paragraphs and versions of set theory framed in first order LP 

or APS are – as first order systems – not fulfilling the antecedents of Dunn’s theorems. 

For a first order system supposed to be universal (i.e. modelling its own semantics) 

questions as to ambiguity arise. Can unintended models be excluded? In a standard setting 

distinguishing object- and meta-language non-intended models are constructed by 

keeping the intended meaning of all the machinery needed to construct the non-intended 

model in the meta-language. After dropping the distinction between object- and meta-

language re-interpretation tends towards global scepticism with respect to meaning. 

Should we care about global scepticism of this sort? 
 



 

 81 

An ontology of inconsistent objects is – in my eyes – the greatest challenge 

of/to paraconsistent mathematics and set theory. 

Given the strong paraconsistent program of true contradictions and a even 

mildly realistic theory of truth (containing in some – maybe even restricted 

– fashion the idea of correspondence), a true contradiction is supposedly 

made true by either an inconsistent fact (taking facts – at least for the moment 

– to be truth makers of statements) or by inconsistent objects. Like true 

contradictions they are just there. 

Mathematics has traditionally been the hallmark of a science that proceeds 

by proof, and so is free of falsehoods and more so of inconsistency. Changing 

the basic logic used in mathematics to a paraconsistent logic makes 

mathematics in a weak sense paraconsistent: If there were to turn up some 

inconsistency in mathematics, it would not explode. But since there are no 

inconsistencies expected to arise there, a mathematician will not be inclined 

to forego the deductive power of FOL. 

Changing set theory to a paraconsistent set theory makes mathematics 

paraconsistent in a stronger sense, since now the basic axioms are taken as 

the inconsistent axioms of naive set theory. There are now real 

inconsistencies – may be even inconsistent objects – in mathematics and the 

logic, therefore, has to be a paraconsistent one. 

And the inconsistency may not only reside with some elusive set theoretic 

entities, but there may be inconsistent numbers as well! 

To have an inconsistent number theory means at least that within the 

theorems of number theory there is some sentence  with  being a theorem 

and  being a theorem at the same time. Supposedly this corresponds to at 

least some object/number a being an inconsistent object. Therefore 

inconsistent mathematics is connected to inconsistent ontology. Its 

underlying logic has to be paraconsistent. 

The problems with having “F(a)” and “F(a)” for some object a seem not so 

pressing if a is some mathematical object than a being a physical object: 

Mathematical objects are either non-existent – mere theory, taken 

instrumentally – or they are in some elusive Platonic realm where strange 

things may well happen. If on the other hand one is a reductionist realist 

about mathematics (mathematics being about structures of reality or 

mathematical entities rather being concrete entities dealt with by mereology) 

then inconsistent mathematics is as problematic as your cat being (wholly) 

black and not being (wholly) black at the same time. 

The challenge may not be that great for Naive Semantics given some mildly 

anti-realistic theory of truth (containing in some – maybe even restricted – 

fashion the idea that truth depends on justification), and observing that the 

inconsistent objects in that area are sentences only. The real problem are 
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objects like the Russell set or the least inconsistent number. Isn't that too 

much to bear, even for a dialetheist? 

As a realist – even if you do not adhere to naive realism or extreme versions 

of metaphysical realism – you adhere to some principle that there correspond 

structured entities (facts or objects with properties) to true statements. The 

entities are – at least as much as our linguistic resources to describe them are 

partly sufficient – as the true statements say they are. This means that a truth 

like “F(a)  F(a)” means at first sight that the object a has property F and 

does not have property F. On second sight one will have work with the idea 

of an extension of “F( )” and an anti-extension of “F( )”, the extension being 

the set of entities fulfilling the criteria of F-ness, and thus being F; and the 

anti-extension being the set of entities fulfilling criteria of not being F, thus 

being not-F.  

For an anti-realist this may solve the problem of inconsistent objects, since 

being an inconsistent objects means nothing more for an anti-realist than that 

the objects fulfils inconsistent criteria. There is no claim on the anti-realist's 

side that there corresponds something to this in reality. 

The anti-realist can even explain how this may happen in case of ordinary 

objects: If predicates are employed to more or the less vague criteria or 

family resemblances to some prototype it may happen that one route of 

resemblance leads from the prototype of F to a, and another route leads via 

some intermediaries from a to a prototype of non-F. In the manner of weak 

paraconsistency one may argue that we have to be able to model theories that 

depict – at least implicitly – the world as containing inconsistent objects, 

without ourselves to be committed to this picture. We need the formal tools 

(like APS) for this, but these tools themselves have no negative ontological 

impact. That is just like we need a logic to draw inferences in works of fiction 

(or about art) where some works are essentially inconsistent with respect to 

some object (e.g., some stories about time travelling or drawings by M. C. 

Escher). 

A realist cannot take this easy way out. For (most) realists properties are 

structures of objects – or parts or tropes... – and either you have them or not.  

In case of sentences – i.e. for a dialetheist view on naive semantics – the way 

out may be that a sentence is really an object that can have inconsistent 

properties without us having ontological scruples: A sentence being a 

dialetheia means that it and its negation are provable. These are clear cut 

properties. The content of the semantic antinomies, once again, concerns 

facts about language. Given our mild form of realism that incorporates some 

idea that truth is also – besides aiming at correspondence – tied to 

justification we can accept inconsistent objects here, since this ‘merely’ 

points to the inconsistent nature of our linguistic access to reality. That is a 

deep philosophical point – as dialetheism is – but it locates the inconsistent 
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objects somewhere in the objects having the job of mediating between our 

mind and the rest of reality, these objects often being constituted by linguistic 

conventions. 

Dialetheism in semantics needs no special ontology of inconsistent objects 

if the inconsistencies are located within our linguistic frameworks. That a 

sentence can be shown to be true and can be shown to be not true points to 

the fact of inconsistent evaluations or derivations, but to no deep ontological 

mystery. 

The problem of inconsistent objects is much harder with respect to ordinary 

objects. If properties are structures of objects, and this means in the last 

analysis structures of distribution of matter and energy, then an inconsistent 

objects cannot exist, it seems, since either at some location there is matter or 

not. 

Inconsistent theories in the sciences can be understood in the sense of weak 

paraconsistency, i.e. they may be modelled by APS-style quantificational 

semantics with inconsistent objects, but one need not believe that there really 
are these objects. 

You really need an ontology of inconsistent objects if you are a mathematical 

realist and your favourite mathematics is inconsistent, or if you are a 

dialetheist in a set theory, again taken realistically. 

 

For a dialetheist the problem is naive set theory, given one is a realist about 

sets. A set, it seems, either is a member of another set or it is not, otherwise 

the including set could not be well-defined. 

 

* 

 

Apart from its ontology paraconsistent set theories are certainly different 

with respect to the theorems holding in them. One cannot expect that 

theorems of ZFC carry over, as many of them are proven by means – like 

indirect proofs – which are not valid in the paraconsistent theories. 

One critical instance may be Cantor’s Theorem. The usual indirect proof 

proceeds by arriving at the contradiction of the element xi being and not being 

an element of the set of the set of the x∈y not being an element of the subset 

they are coordinated to by the supposed bijection  between a set y and (y), 

i.e. (xi)={x∈y | x  (x)}. A dialetheist may simply embrace the 

contradiction.48  

 

48  Even proofs like (Raja 2005) which do not use the diagonalization proceed by 

reduction, an inference not available in full generality in paraconsistent systems. 
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Non-existence claims which rest on Cantor’s Theorem can be rejected by 

paraconsistent set theories. The set of all truths exists: the usual argument for 

its non-existence does no longer go through (that for any sentence  and any 

subset x of truths the cardinality of questions ∈x exceeds the supposed 

cardinality of the set of truths; cf. Grim 1991, pp.91-93). 

If there was no proof of Cantor’s Theorem one may well have (U)  U 

without further contradiction. The absence of Cantor’s Theorem, 

additionally, may wreck also the move to higher infinite cardinalities. Thus 

the universe U of such a paraconsistent set theory may not resemble V.  

In the extreme case – ‘extreme’ for the common view, of course – we are 

driven from ‘Cantor’s Paradise’: there is exactly one infinite cardinality: 

infinity. One may embrace this actual infinity and stick to the pre-Cantorian 

intuition that there come no larger collections than the (simple) infinite ones 

(i.e. those having this one cardinality ). 

(NC) and a condition  similar to the Axiom of Infinity (also mentioning the 

comprehending set y): 

 x =  ∨ (∃z∈y)(x = z ∪ {z}) 

open in “x”, allow for an infinite set: = ensures ∈y, enforcing 1∈y by 

the second disjunct, and so forth. The finite ordinals exist by their instances 

of (NC), where the defining condition  may simply list their finitely many 

members (e.g. x∈3  x =  ∨ x = {} ∨ x = {,{}}). The infinite set  

collects them. 

If there is no infinity beyond the countable (and thus no properties beyond 

those which are expressible by the formulas of our set theoretic language) 

one may use set abstraction to define “∈” by the schematic 

 (D∈2) x ∈ y ≝  y = {x | (x)} ∧ (x) 

“∈” thus no longer being the primitive expression introducing set theory; 

“” being defined in the usual way.  

In this way a variant of the Axiom of Constructability, V = L, may return, 

namely:  

(Constructability)  U = L  

If for all sets there is some defining formula  the last argument in favour of 

a distinction between two types of collections, the one defined by a uniting 

‘rule’ and the other merely by its elements (one understanding of the 

distinction between ‘classes’ and sets) loses its force. Note again that the 

arguments against Constructability stemming from the naturalness of the 

concept of POWERSET and set theoretic realism also have no force in the 

absence of Cantor’s Theorem. All subsets can be there and be expressible. 
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At the end of chapter I we outlined an approach claiming V to be an entity 

sui generis. We may use the special character of V to account for the viability 

of ZFC then. If one does not support such an understanding of V one needs 

some other (stronger) formal system as meta-theory of ZFC. So even if set 

theory is our strongest formal system in applied science, we have to ask 

where we are when we talk about it and V. The main advantage of a 

paraconsistent approach can be seen in its incorporation of meta-theory into 

the most comprehensive formal system. A paraconsistent set theory has to 

have a paraconsistent meta-theory, since otherwise it has to use some theory 

like ZFC again, inheriting all the conundrums the paraconsistent theory was 

set out to solve. The meta-theory cannot be consistent as it treats of the 

universe (i.e. treats of an inconsistent object), which can only be reasoned 

about using (restricted) paraconsistent inference rules. A paraconsistent set 

theory has a model <U,I> U being the domain, I the interpretation function. 

Their ordered pair is a set, as U can occur in itself and other sets, and so is 

treated within the very same theory again. And it may be another inconsistent 

object.49 

 

 

* 

 

 

Given the difficulties in understanding an incomplete universe and the 

fundamental role of a Domain Principle, why don’t we just talk about V 

without assuming it to be the value of a bound variable? This appears 

reasonable as doing otherwise land us in an incomprehensible framework of 

indefinite existents. 

Assume we do not give up on the infinite, whether we are Platonists or 

fictionalists or whatever else. There are then infinite collections. Comprising 

within them all of a kind not collectable itemwise by finite beings. We collect 

them using our concept COLLECTING. If we talk about the Fs we naturally 

assume that there is a collection F where they are in. Cantor’s Domain 

Principle expresses this idea that the Fs we quantify over or talk about can 

be collected into a totality. Sometimes the totality has to be of another type 

to avoid antinomies (e.g. in the set/class-distinction). As there seems to be 

 

49  If standard logic and set theory are employed in the meta-theory one can use classical 

meta-theorems to outline (term) models of some paraconsistent set theories (cf. Libert 

2003, 2005 and reference therein). This is neither an option in our discussion about U, 

where pushing the issue in the meta-language does not help, nor in the wider dialetheist 

perspective, where, for instance, the conditional and identity rules employed by Libert 

would lead into serious trouble (cf. Bremer 2005, pp.185-98). 
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no limit to this procedure we always progress to a wider domain.50  The 

Domain Principle thus enforces the idea of the incomplete universe. A 

domain is added to the objects, giving a larger domain, which is added to the 

objects – and so on. 

Unless, that is, we meet a fixed point in this progression. Informally, the 

totality of things to be thought of or to be talked of can be thought or talked 

of: it belongs to the very domain it defines. Thinking of ‘the domain x is in’ 

applied to it leaves us at it. Thus it may be called a fixed point of the Domain 

Principle. 

Is U of this type? Having U∈U requires several other adjustments in set 

theory. And they do not come cheaply – up to inconsistency. 

As intuitive as the Domain Principle may occur to us, leading us up the 

ladder of the indefinite may be too much, as we have seen above. We might 

accept that the whole construction has a limit: a collection beyond further 

collecting. There lays the naturalness of Limitations of Size: There is one 

size too big to be collected into a set. This collection better not be the set U 

to avoid severe complications in set theory, otherwise rather intuitive. So one 

may see the idea behind Limitations of Size without endorsing NBG or MK, 

or any other set/class-theory. Nothing is gained by having (several) classes. 

With a collection of classes the question of their collectability immediately 

arises. 

The single limit object V might be different. 

If that limit object V exists – neither a set, nor an extended set like an 

inaccessible cardinal, nor a class – ZFC is consistent. And if our intuitive 

notion of set rather endorses the General Continuum Hypothesis we add it as 

well: ZFGCH is consistent, if V exists. Our notion of set suits V, and vice 
versa.  

This conception of V as collecting all the sets but being a special limit object 

may correspond better to our concept SET than taking set theory just as the 

realm up to the first strongly inaccessible cardinal. [The Cantor quote setting 

the theme of this book may illustrate this perspective.] Someone might argue 

that our concept SET takes us thus far, but that there are other mathematical 

objects and theories (especially those of large cardinals, measures etc.), 

which pick up the baton where ZFC hands it over. Although this sounds like 

a nice division of labour, the large cardinals are too set-like to provide a 

natural boundary to our concept SET, supposing it to fit to ZFC in the first 

place. V is a stop point, the first inaccessible cardinal is not. And large 

 
50  Recently Rayo and Williamson (2003) and others have argued for ‘unrestricted First-

Order languages’, i.e. for quantification without a domain. The formal proposal, however, 

must employ SOL and a richer meta-language for which similar problems arise. One may 

also consider the employed SOL as critical and problematic (cf. Weir 2006). Unrestricted 

quantification is only unrestricted beyond an object/meta-language distinction. 
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cardinals – again – give rise to the question where their hierarchy is collected 

in, inviting and requiring V or some V’, landing us again in an incomplete 

universe. V is not an incomplete universe at all: although we cannot walk, 

count or ‘powerset’ us up to it, V contains all sets; they are not in the making, 

there are no processes of indefinite extension going on. In this respect V as 

an object at the limits of thoughts differs from the row of experiences 

discussed by Kant in the Critique of Pure Reason: Kant traces the antinomies 

to their common error of taking the series of experiences, which is only given 

piecemeal and prospectively (‘aufgegeben’) as a ‘given’ totality. As 

experiences are obviously under temporal construction their series can never 

be united – by whom? In an experience? Sets, in contrast, are not 

(temporally) constructed and thus should be collectible in a unity. Thus far 

we are carried by the Domain Principle. At that limit we ‘simply’ have V as 

an object, and stop adding it to a domain. 

Our concept of SET may force stronger set theoretic axioms on us. This 

shows, however, not the incompleteness or growing extension of V, but the 

incompleteness of a theory like ZFC. Urelements and  have no members, 

but are members; sets have and are members; V has members, but is not a 

member: it occupies a slot in conceptual space.51 

We may say: our idea of V is an idea contained and connected to our concept 

SET. The special nature of V is forced upon us by the unfeasibility of the idea 

of an incomplete or thought independent but growing set theoretic universe. 

We know of V by the picture we have of the iterative hierarchy and the 

structural relations between the ranks. 

This conception of V follows some intermediate path between the two 

ontological traditions in analytic philosophy. On the one hand there are 

reasons of conceptual analysis why V suits our concept SET. On the other 

hand some peculiar postulates need to be laid down for V. “V” is a rigid 

designator naming an entity which does not belong to some domain of 

quantification, although all other entities and referents of names do! 

The major difficulty here would be to allow for a level or form of meta-

theory when talking about V which is outside of any formal system. That 

way may lay ineffability or some version of ontological semantic mystery! 

 

Comparing noneism, the incomplete universe and the thesis of V being an 

entity sui generis, the third idea comes out best in its combination of 

conceptual analysis and axiomatic ontology. If an inconsistent or noneist 

ontology is too much to swallow when taking on such a paraconsistent 

system, then we have to opt for at least partial fictionalism with respect to 

 
51  The slot of neither having members nor being a member finds no existing filler, if 

there is not David Lewis’ atomless, uncollectible ‘gunk’. 
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(some) entities proposed within paraconsistent set theories. Then the 

exploration of universality in set theory naturally awaits a further thorough 

exploration of fictionalism. Too many difficult questions wait there: Fictions 

like fictional characters in literature depend historically and genetically on 

their authors, and maybe on still existent copies of the literary work and 

living readers (cf. Thomasson 1999), nothing of this sort can be said of pure 

sets. Pure sets (like in ZFC) are not just presented as abstract entities outside 

of space and time, but their presentation (the story told by ZFC) arguably 

does not depend on any particular set theorist – not even Cantor, Frege or 

Zermelo. There might be several intermediate ontological categories 

between such purely abstract entities and spatio-temporal entities (cf. 

Thomasson 1999, pp. 120-33). Even in ZFCU one may wonder about the 

singletons of contingent urelements like the Cologne Cathedral: It seems 

bizarre to assume it to exist before the building was finished or even planned, 

thus this set seems to have a historical place! The recent interest in 

fictionalism may lead to increased ontological options. 
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ABBREVIATIONS AND NOTATION 
 

 

Standard symbols are used: , ,, , , , , , , , , ,  … 

(x)  is the powerset of x. 

|x|   is the cardinality of the set x. 

→ is a relevant conditional 

 is used in rule statements 

 

Greek letters ,  … are used as schematic for unspecified formula or 

predicates (open formulas) of a given language. , ,  are mostly used for 

sets of formulas. 

 

CAPITALIZATION is used to signal that we now talk about a concept. 

Single quotation marks are used in quotes and as ‘scare quotes’ of established 

theoretical terms. Double quotations marks quote an expression. Names of 

famous theorems are italicized.  

 

M  is the set of urelements  

U  is the universal set 

V  is the complete iterative hierarchy, V a rank in the hierarchy 

 

 



 

90 

REFERENCES 

German sources are translated or quoted by English translations. 

 

Ackermann, Wilhem (1956). “Zur Axiomatik der Mengenlehre“, Mathematische Annalen, 

131, pp.336-45. 

Aczel, Peter (1988). Non-Well-Founded Sets. Stanford. 

 -/Rathjeu, Michael (2001). Notes on Constructive Set Theory. Institut Mittag-Leffler. 

Report No.40, Stockholm. 

Arrigoni, Tatiana (2007). What is meant by V? Paderborn. 

Ballaguer, Mark (1998). Platonism and Anti-Platonism in Mathematics. Oxford. 

Batens, Diderik et. al. (1999). (Eds.) Frontiers of Paraconsistent Logic. Baldock. 

Bencivenga, Ermanno (1976). “Set Theory and Free Logic”, Journal of Philosophical Logic, 

5, pp.1-15. 

Bernays, Paul (1937). “A system of axiomatic set theory, Part I”, Journal of Symbolic Logic, 

2, pp.65-77. 

- (1968). Axiomatic Set Theory. New York. 

Blau, Ulrich (2004). “The Significance of the Largest and Smallest Numbers for the Oldest 

Paradoxes”, in: (Link 2004), pp.311-48. 

Boolos, George (1984). “To be is to be a value of a variable (or to be some values of some 

variables”, Journal of Philosophy, 81, pp.430-49. 

 - (1985). “Nominalist Platonism”, Philosophical Review, 94, pp.327-44. 

 - (1987). “The Consistency of Frege’s Foundations of Arithmetic”, in: Thomson, Judith 

(Ed.). On Being and Saying. Essays in Honour of Richard Cartwright, Cambridge/MA, 

pp.3-20. 

- (1989). “Iteration Again”, Philosophical Topics, 42, pp.5-21. 

 - (1998). Logic, Logic, and Logic. Harvard. 

Brady, Ross (1999). „Entailment, Negation and Paradox Resolution“, in: (Batens et al. 1999), 

pp.113-36. 

- (2006). Universal Logic. Stanford. 

Bremer, Manuel (2005). An Introduction to Paraconsistent Logics. Bern et al. 

- (2007). “Varities of Finitism”, Metaphysica, pp.29-53. 

- (2008). Conceptual Atomism and Justificationist Semantics. Bern et al. 

Cann, Ronnie (1993). Formal Semantics. An Introduction. Cambridge. 



 

 91 

Cantor, Georg (1887). “Mitteilungen zur Lehre vom Transfiniten I”, Zeitschrift für 

Philosophie und philosophische Kritik, 91, pp.81-125, 252-70. 

- (1991). Briefe. Ed. by H. Meschkowski and W. Nilson. Berlin. 

Cartwright, Richard (1994). “Speaking of Everything”, Nous, 28, pp.1-20. 

Chisholm, Roderick (1973). “Homeless Objects”, Revue Internationale de Philosohie, Vol. 

104/05, pp.207-23. 

Church, Alonzo (1956). Introduction to Mathematical Logic. Princeton. 

- (1974). “Set Theory with a Universal Set”, Proceedings of Symposia in Pure 

Mathematics, XXV, pp.297-308. 

Coffa, Alberto (1991). The Semantic Tradition from Kant to Carnap. Cambridge. 

Cohen, Paul (1966). Set Theory and the Continuum Hypothesis. Dover. 

Dauben, Joseph (1979). Georg Cantor. His Mathematics and Philosophy of the Infinite. 

Cambridge/MA. 

Deiser, Oliver (2010). Einführung in die Mengenlehre. Berlin, 3rd Ed. 

Dreben, Burton/Kanamori, Akihiro (1997). “Hilbert and Set Theory”, Synthese, 110, pp.77-

125. 

Dummett, Michael (1991). The Logical Basis of Metaphysics. London. 

Dunn, Michael (1988). “The Impossibility of Certain Second-Order Non-Classical Logics 

with Extensionality”, in: Austin, D. (Ed.) Philosophical Analysis. Dordrecht, pp.261-

79. 

Ebbinghaus, Heinz-Dieter (2007). Ernst Zermelo. An Approach to His Life and Work. 

Berlin. 

Fitting, Melvin (2007). Incompleteness in the Land of Sets. London. 

Forster, Thomas (1992). Set Theories with a Universal Set. Exploring an Untyped Universe. 

Oxford. 

Fraenkel, Abraham (1919/1928). Einleitung in die Mengenlehre. Berlin, quoted by 3rd Ed. 

1928. 

- (1953). Abstract Set Theory. Amsterdam. 

Frege, Gottlob (1884). Die Grundlagen der Arithmetik. Breslau. 

George, Alexander/Velleman, Daniel (2002). Philosophies of Mathematics. Malden. 

Glubrecht, Jürgen/Oberschelp, Arnold/Todt, Günter (1983). Klassenlogik. Zürich et al. 

Gödel, Kurt (1940). The Consistency of the Continuum Hypothesis. Princeton. 

Goodman, Nelson (1943). “On the Simplicity of Ideas”, Journal of Symbolic Logic, 8, 

pp.107-21. 

- (1949). “The Logical Simplicity of Predicates”, Journal of Symbolic Logic, 14, pp.32-

41. 



 

 92  

 - (1972). Problems and Projects. Indianapolis/New York. 

Grim, Patrick (1991). The Incomplete Universe. Cambridge/MA. 

Haller, Rudolf (1995). (Ed.) Meinong and the Theory of Objects. Grazer Philosophische 

Studien, Vol. 50. 

Hausdorff, Felix (1914). Grundzüge der Mengenlehre. Leipzig. 

Heintz, John. (1979). “Reference and Inference in Fiction”, Poetics, 8, pp. 85-99. 

Hilbert, David (1925). “Über das Unendliche”, Mathematische Annalen, 95 (1926), pp. 161-

90. 

 - /Ackermann, Wilhelm (1928). Grundzüge der theoretischen Logik. Berlin. 

Holmes, Randall (1999). “Subsystems of Quine’s ‘New Foundations’ with Predicativity 

Restrictions”, Notre Dame Journal of Symbolic Logic, 40. 

- (2005). Elementary Set Theory with a Universal Set. Cahiers Series of the Center for 

Logic in the Department of Philosophy at the Catholic University of Louvain. Louvain 

(Manuscript), 2nd Draft. 

 - (2006). “Alternative Set Theories”, Stanford Encyclopaedia of Philosophy. http: 

//plato.stanford.edu/  

Jackson, Frank (1998). From Metaphysics to Ethics. A Defence of Conceptual Analysis. 

Oxford. 

Jacquette, Dale (1996). Meinongian Logic. Berlin/New York. 

Jech, Thomas (2003). Set Theory. The Third Millennium Edition, Revised and Expanded. 

Berlin/Heidelberg. 

Kalderon, Mark (2005). (Ed.) Fictionalism in Metaphysics. Oxford. 

Kreisel, Georg (1967). “Informal rigour and completeness proofs”, in: Lakatos, I. (Ed.) 

Problems in the Philosophy of Mathematics. Amsterdam, pp.138-86. 

Kroon, Frederick (2008). “Much Ado About Nothing: Priest and the Reinvention of 

Noneism”, Philosophy and Phenomenological Research, LXXVI, pp. 199-207. 

Lake, John (1973). “On an Ackermann Type Set Theory”, Journal of Symbolic Logic, 38, 

pp.410-12. 

Lambert, Karel (1983). Meinong and the Principle of Independence. Cambridge et al. 

 - (1991). (Ed.) Philosophical Applications of Free Logic. New York/Oxford. 

 - (1990). “Noneism or allism?”, Mind, 99, pp.23-31. 

Lavine, S. (1998). Understanding the Infinite, Cambridge/MA, 2nd Ed.  

Lawvere, William/Schanuel, Stephen (1991). Conceptual Mathematics. A first introduction 

to categories. Cambridge. 

Lewis, David (1986). On the Plurality of Worlds. Oxford. 

http://plato.stanford.edu/
http://plato.stanford.edu/


 

 93 

Libert, Thierry (2003). “ZF and the Axiom of Choice in some Paraconsistent Set Theories”, 

Logic and Logical Philosophy, 11, pp.91-114. 

 - (2005). “Models for a paraconsistent set theory”, Journal of Applied Logic, 3, pp.15-

41. 

Link, Godehard (2004). (Ed.) One Hundred Years of Russell’s Paradox. Berlin. 

Mac Lane, Saunders (1998), Categories for the Working Mathematician. 2nd Ed. New York. 

Maddy, Penelope (1983). “Proper Classes”,  Journal of Symbolic Logic, 48, pp.113-39. 

 - (1988). “Believing the Axioms I”, Journal of Symbolic Logic, 53, pp.481-511. 

Mahler, Laurence (1968). Finite Sets. Theory, Counting, and Applications. Columbus. 

Marion, Mathieu (1998). Wittgenstein, Finitism, and the Foundations of Mathematics. 

Oxford. 

Martin, R.M. (1969). Belief, Existence and Meaning. New York. 

McGee, Vann (2006). “There is a Rule for Everything”, in: Rayo, A./Uzquiano, G. (Eds.) 

Absolute Generality, Oxford, pp.179-202. 

Meinong, Alexius (1902). Über Annahmen. Leipzig. 

 - (1904). Untersuchungen zur Gegenstandstheorie und Psychologie. Leipzig. 

 - (1921). “A. Meinong”, in: Die deutsche Philosophie der Gegenwart in 

Selbstdarstellungen, ed. by Raymund Schmidt, Leipzig; quoted by the 

Gesammtausgabe, Vol. VII, Graz, 1978. 

Montague, Richard (1961). “Semantical closure and non-finite axiomatizability”, in Infinistic 

Methods. Warsaw, pp. 45-69. 

Moore, A. W. (1990). The Infinite. London. 

Morse, Anthony (1965). A Theory of Sets. New York/London. 

Noolan, Daniel (2008). “Properties and Paradox in Graham Priest’s Towards Non-Being”, 

Philosophy and Phenomenological Research, LXXVI, pp. 191-98. 

Oliver, Alex (1996). “The Metaphysics of Properties”, Mind, 105. 

Patterson, Douglas (2008). “Representationalism and Set-Theoretic Paradox”, in: Preyer, 

G./Peter,G. (Eds.) Philosophy of Mathematics. Frankfurt a.M., pp. 11-28. 

Potter, Michael (2004). Set Theory and Its Philosophy. Oxford. 

Priest, Graham (1987). In Contradiction. Dordrecht. 

 - (1991). “Minimally Inconsistent LP”, Studia Logica, 50, pp. 321-33. 

 - (2003). “Meinongianism and the Philosophy of Mathematics”, Philosophia 

Mathematica, 11, pp.3-15. 

 - (2005). Towards Non-Being. Oxford. 

 - (2006). In Contradiction. Second Edition. Oxford. 



 

 94  

 - (2008). “Replies to Nolan and Kroon”, Philosophy and Phenomenological Research, 

LXXVI, pp. 208-14. 

 -/Routley, Richard/Norman, Jean (1989). (Eds.) Paraconsistent Logic. Essays on the 

Inconsistent. Munich et al. 

Quine, Willard Van Orman (1937). “New Foundations of Mathematics”, American 

Mathematical Monthly, 44, pp. 70-80. 

- (1963). Set Theory and Its Logic. Cambridge/MA. 

Raja, N. (2005). “A Negation-Free Proof of Cantor’s Theorem”, Notre Dame Journal of 

Formal Logic. 

Rayo, Augustin/Williamson, Timothy (2003). “A Completeness Theorem for Unrestricted 

First-Order-Languages”, in: Beal, JC (Ed.) Liars and Heaps. Oxford, pp.331-56. 

Restall, Greg (2000). An Introduction to Substructural Logics. London. 

Routley [Sylvan], Richard (1979). “Dialectical Logic, Semantics and Metamathematics”, 

Erkenntnis, 14, pp. 301-31. 

- (1980). Meinong’s Jungle and Beyond. Canberra. 

- (1995). “Re-Exploring Item-Theory”, in: (Haller 1995), pp.47-85. 

-/Brady, Ross (1989). "The Non-Triviality of Extensional Dialectical Set Theory", in: 

Priest/Routley/Norman (1989), pp. 415-36. 

-/Meyer, J. (1976). "Dialectical logic, classical logic and the consistency of the world", 

Studies in Soviet Thought, 16. 

- /Routley, Val (1973). “Rehabilitating Meinong’s Theory of Objects”, Revue 

Internationale de Philosohie, Vol. 104/05, pp.224-54. 

Russell, Betrand (1904). “Meinong’s Theory of Complexes and Assumptions”, Mind, 13. 

 - (1919). An Introduction to Mathematical Philosophy. London. 

Ryle, Gilbert (1973). “Intentionality-Theory and the Nature of Thinking”, Revue 

Internationale de Philosohie, Vol. 104/05, pp.255-65. 

Shapiro, Stewart (1991). Foundations without Foundationalism. A Case for Second-order 

Logic. Oxford. 

- (2000). Thinking about Mathematics. The Philosophy of Mathematics. Oxford. 

- (2003). “All Sets Great and Small: And I do Mean ALL”, Philosophical Perspectives, 

17, pp.467-90. 

Suppes, Patrick (1960). Axiomatic Set Theory. Princeton et al., 4th Ed. 1967. 

Tait, W. W. (1981). “Finitism”, The Journal of Philosophy, pp.524-46. 

Thagard, Paul (1978). “The Best Explanation. Criteria for Theory Choice”, The Journal of 

Philosophy, 75, pp.76-92. 

 - (2000). Coherence in Thought and Action. Cambridge/MA. 



 

 95 

Thomasson, Amie (1999). Fiction and Metaphysics. Cambridge. 

Tiles, Mary (1989). The Philosophy of Set Theory. A Historical Introduction to Cantor’s 

Paradise. Oxford. 

Van Bendegem, Jean (1993). “Strict, Yet Rich Finitism”, in: Wolkowski, Z. (Ed.) First 

International Symposium on Gödel’s Theorems. Singapore et al. 

 - (1999). “Why the Largest Number Imaginable Is Still a Finite Number”, Logique et 

Analyse, 42, pp. 107-26. 

Varzi, Achille (2006). “The Universe Among Other Things”, Ratio, XIX, pp.107-20. 

Von Neumann, John (1925). “Eine Axiomatisierung der Mengenlehre“, Journal für die reine 

und angewandte Mathematik, 154, pp.219-40; 155, p.128. 

- (1929). “Über eine Widerspruchsfreiheitsfrage der axiomatischen Mengenlehre“, 

Journal für die reine und angewandte Mathematik, 160, pp.227-41. 

Wang, Hao (1970). Logic, Computers, and Sets. New York. 

Weir, Alan (2006). “Is it too much to Ask to Ask for Everything?”, in: Rayo, A./Uzquiano, 

G. (Eds.) Absolute Generality, Oxford, pp.333-68. 

Williamson, Timothy (2007). The Philosophy of Philosophy. Oxford. 

Zalta, Edward (1988). Intensional Logic and the Metaphysics of Intentionality, Cambridge. 

- (1996). Principia Metaphysica. http://mally.stanford.edu/principia/principia.html 

Zermelo, Ernst (1908). “Untersuchungen über die Grundlagen der Mengenlehre I“, 

Mathematische Annalen, 65, pp.261-81. 

- (1930). “Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die 

Grundlagen der Mengenlehre”, Fundamenta Mathematicae, 16, pp. 29-47. 


