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Any mathematical consideration must 

be founded on the notion of ‘allness’ or 

‘quantification’ as a basic category of 

logic which cannot be subject to further 

analysis whatsoever. 

(Ernst Zermelo) 

 

What surpasses all that is finite and 

transfinite is no “Genus”; it is the 

single, completely individual unity in 

which everything is included, which 

includes the “Absolute”, incomprehen-

sible to the human understanding. 

(Georg Cantor) 

 

 

Standard symbols are used. 

(x)  is the powerset of x. 

|x|   is the cardinality of the set x. 

 is used in rule statements 

Greek letters ,  … are used as schematic for unspecified formula or predicates (open 

formulas) of a given language. , ,  are mostly used for sets of formulas.  

CAPITALIZATION is used to signal that we now talk about a concept. 

Single quotation marks are used in quotes and as ‘scare quotes’ of established terms. 

Double quotations marks quote an expression. Names of famous theorems are italicized.  

M  is the set of urelements  

U  is the universal set 

V  is the complete iterative hierarchy, V a rank in the hierarchy 
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Introduction 

 

This essay discusses the fate of universality and a universal set in several set 

theories. It presupposes a general background in logic and general 

knowledge of set theoretic basics. Even basic points are repeated if the 

context of discussion profits from a short reminder, but no systematic survey 

of the different systems is attempted. The book aims at a philosophical study 

of ontological and conceptual questions around set theory. A formal 
exposition of some consistent set theories with a universal set and related 

theorems can be found in (Forster 1992) and the sources mentioned there 

 

Set theories are ontologies. They posit entities and claim that these exhibit 

some essential properties laid down in the set theoretical axioms. Like 

Zermelo (in the opening paragraphs of Zermelo 1908) Fraenkel, in his early 

introduction to set theory (1919/19282) explicitly outlines this axiomatic 

approach: 

According to the essence of this method we refrain to define the concept of 

set or to analyze it, we rather start with some axioms in which the concept of 

set like the relation ‘to be contained as an element’ occurs, and in which the 

existence of some sets is postulated. The concept of set is implicitly 

established by the totality of these axioms. 

 

Collecting these postulated entities poses the problem of universality. Is the 

collection of the set theoretical entities itself a set theoretical entity? What 

does it mean if it is, and what does it mean if it is not? To answer these 

questions involves developing a theory of the universal set. For a start we 

may define the universal set as U = {x | x = x}. As set theories extend first 

order logic with identity (FOL) or some variant of it (in a non-standard logic) 

they contain the axiom: (x)(x = x). U thus comprises the whole domain of 

the language. Tautologically whatever exists exists. So, supposedly, there 

are all existents. Why not continue: So there is the totality of these existents? 

Why shouldn’t they be collectible? After all, set theoretical quantification 

runs over all sets, doesn’t it? If, however, that totality was an additional 

entity we could collect another totality including it – and so forth, it seems. 

Unless this totality possessed a nature sui generis, setting it apart from 

ordinary things and sets.  

 

Some of the set theories are pure set theories: their domain consists entirely 

of sets, all variables range over sets. Some of the theories contain proper 

classes in addition to sets (improper classes). Some theories contain 

additional ‘urelements’ (i.e. objects which are neither sets nor classes, but 
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something to be collected into sets or classes). Some other theories use 

numbers as basic entities, not reduced to set theoretic construction. The 

discussion here will mention these differences, but will not use a neutral 

formalization, which applies to all theories; this would require using one type 

of variables and sortal predicates like “set”, “ordinal” etc. to restrict 

quantification to the appropriate type, e.g. “(x,y)(Set(x)Set(y)  …”. The 

drawback of this formalization would be its contrast to the respective 

textbooks and articles. Additionally, it would be very cumbersome, e.g. 

having all the sethood statements in pure set theories like Z, the 

axiomatization of which would include now a new axiom “(x)Set(x)”,  

which had to be used all over to get rid of the sethood requirements in the 

antecedents of statements. Thus, when discussing mixed type systems sortal 

predicates may be used, but not with pure set theories, and not with systems 

which only distinguish sets from (proper) classes; in the latter case lower 

case variables refer to sets, upper case variables to (proper) classes. 

The existence of urelements is important for the broader ontological picture, 

but the presence or absence of a basic set of urelements does not change the 

treatment of universality in many set theories (like ZFC). One may ask 

oneself what sort of things might be chosen as urelements. If physical entities 

are chosen, there are – in the light of our best physical theories – only finitely 

many of them, which can be collected into a set of urelements. Physical 

objects may have their own principles of composition (like mereology). 

Their presence does not influence the question whether all sets can be 

collected into a universal set. Once sets are present, there seems to be no 

need for further elementary logical (abstract) entities like numbers. A 

collection of urelements that matches the sets in cardinality seems highly 

dubious, as one may suppose every urelements to have a singleton and any 

two of them to be elements of their pair set – etc. In some cases (like 

Specker’s Theorem) we have to talk about urelements.  

 

Several issues related to set theory will not be discussed here: We are not 

much concerned with the epistemology of mathematics in general or set 

theory in particular. With respect to epistemology all the theories discussed 

here are prima facie in the same boat. We may, however, raise some 

questions concerning whether understanding universality raises additional 
epistemological problems. We start with the ordinary working assumption 

that we have some concepts and ideas of sets and numbers and set theory 

tries to systematize them. Therefore, we will not be concerned with the 

general issue of abstractness or ‘Platonism’ either. Again, prima facie, all the 

theories discussed here are in the same boat. We may raise some questions 

concerning whether some ways of understanding universality or the set 

theoretic universe raise additional ontological problems. 
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For the set theoretical anti-realist our study is just a case study in formal 

ontology and its models. Nonetheless some such ontologies might be more 

useful than others even if all are – strictly speaking – false, as there are no 

sets whatsoever. Even if there are no sets some set ontologies may be more 

helpful fictions than others. They help in systematizing mathematics, which 

again, even if without subject matter itself, helps as part of science in 

describing reality. Even Russell held at times that sets are just a manner of 

speaking, but not part of the furniture of the world (cf. Russell 1914). 

Nonetheless as they correspond, for Russell, to the fundamental 

‘propositional functions’ talk about them is neither arbitrary nor idle. One 

theory is singled out as capturing or founding our mathematics.1 

For the set theoretical realist one set theory might be better in capturing set 

theoretical reality than another. Either one has to assume U or one has to 

assume that U does not exist. Our study then is one attempt to ascertain 

which option we have to take. Even if one endorses ‘plenitudinous 

Platonism’ (the thesis that all consistent mathematical theories correspond 

to some part of the realm of abstract entities2) the issue of U is not idle. The 

different set theories might then be taken to deal with different areas of 

abstract entities. In one area there might be something like U in the other 

area not. Nonetheless, one may argue that one of the areas has more right to 

be considered as making up sets as we have an intuitive notion of SET, which 

may be explicated better in one theory than in another. Even if there are 

several areas of abstract entities which are set-like one area may be the 

intended standard model corresponding to our concept of SET. In this 

perspective our study is concerned with the conceptual issue of analysing 

our concept of sets. Comparing the different theories and weighing the 

advantages and disadvantages of incorporating U into a set theory (i.e. the 

gain and the strain of related theorems/facts in relation to our intuitive 

understanding of sets) we may come to a result whether our intuitive concept 

SET involves the assumption of a universal set or rather some other picture. 

Even if set theory was not of sets in the referential sense (as there might be 

no sets at all) set theory would be of sets in the intensional sense of setting 

out our conceptions of sets. And our question here is whether the universal 

 
1  Ironically Russell demanded at that time, of course inspired by the antinomy of the 

set of non-self-membered sets, that saying either that a set is a self-member or that it is 

not should be meaningless (not just false). A requirement which excludes the Axiom of 

Foundation. Naturally Russell thought in terms of his theory of types, which by definition 

fulfils this requirement, but, nevertheless, was laying down conceptual constraints on a 

feasible concept of set.  
2  Cf. Balaguer 1998. The view that consistency proves sufficient to take a 

mathematical theory seriously has many variants. These include Hilbert’s formalism and 

fictionalism, a theory of course denying the existence of abstract entities. Included is as 

well Cantor’s ‘theological Platonism’, which has all consistent transfinite entities existing 

as ideas in God’s mind. 
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set crucially belongs to these conceptions, or whether it is an idea at the 

periphery of these conceptions, only to be rejected on second thoughts about 

its consequences. 

 

ZF asserts that some collections we have naively thought of as sets (the set 

of ordinals, cardinals, the universal set) are not sets – i.e. they do not exist 

for ZF itself. Most surprising is this claim for U, as {x| x = x} seems so 

natural. That our untutored intuitions have to be partly corrected at the 

foundation of science, however, occurs not just in ZF but – one may well 

argue – at the foundations of physics (e.g. with our untutored intuitions about 

the locality of particles or the properties of time) or in biology (e.g. with the 

changeability of some organisms’ essence/species). Thus the mere correction 

of our prior, untutored understanding of a basic concept does not establish in 
itself that ZF goes wrong. The argument has to concern whether this is the 

best option, what repercussions this step has, and whether the resulting 

concept of sets provides a more coherent (unified and comprehensive) 

understanding of sets. 

 

The antinomies of semantics and set theory have to be treated somehow to 

provide a coherent systematic account of the notions involved. The same 

applies to the presupposed concept UNIVERSALITY in set theory. One can well 

do in large parts without treating these problems. Many a textbook works 

with informal set theory. They miss then, however, a comprehensive account 

of sets. What their success – inter alia (compare similar arguments in 

semantics) – shows is that the problems occur placed within an otherwise 

viable world view or viable procedures in semantics or set theory, say some 

version of semantic realism or of constructive representationalism. I, 

therefore, neglect theories that argue from antinomies and universality to 

some form of mysticism, ineffability, anti-representationalism, or what not.3 

 

 
3  Patterson (2008) extends his anti-representational program to mathematics. 

Postmodern authors endorse Wittgenstein’s Tractarian mysticism about ineffability. 
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The following issues set the theme for much of the discussion here: 

1. How can one avoid slipping into a ‘theory’ that universality is 

ineffable? 

2. Are there different aspects to universality in set theory, which stand in 

conflict to each other? 

3. What aspects of universality are embedded within our concept SET? 

and most importantly: 

4. How far can axiomatic ontology take us in postulating our way out of 

the problems around universality? 

 

The treatment of universality in standard set theory ZF raises issue (2): 

universal comprehension and universal collection (into a domain of all sets) 

seem to be incompatible. The spectre of ineffability, issue (1), raises its head. 

We have to ask whether ZF(C) has a claim to be ‘natural’ or ‘intuitive’ for 

us, issue (3). ZF also articulates one picture of universality: the iterative 

hierarchy. Articulating this picture raises issues (1), (3) and (4).  

 

Although this is a systematic study (i.e. not an historical investigation into 

the development of several set theories) sometimes it may be illuminating to 

mention and consider side-remarks made by their foundational authors. In 

these remarks one can at times discern the broader ontological picture the 

author works with.4 

 

* 

 

 
4  As this is no detailed historical study, I often omit giving the detailed source of a 

side-remark, but refer the interested reader to the comprehensive studies by Ebbinghaus 

(2007) on Zermelo, Dauben (1979) on Cantor, as well as (Lavine 1998). Some remarks 

have entered the set theoretical folklore and can be found in many introductory books 

(e.g. Potter 2004) or (Deiser 2010), which contains many quotes of the founding fathers, 

following the development of set theory. 
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Universality in ZFC 

 

ZFC has become in its first order axiomatization the accepted set theoretic 

standard. We take, as usually done, as Z the system containing the Axioms 

of Extensionality, Pairing, Powerset, Sums, Separation and Infinity. ZF adds 

Foundation and Replacement, like Separation an axiom schema. ZFC adds 

the Axiom of Choice.5  ZFC+GCH adds the Generalized Continuum 

Hypothesis to ZFC – and so on for stronger axioms. 

The antinomies (like Russell’s Paradox6) are often taken as showing that 

Naïve Comprehension 

 (NC1)  (y)(x)(xy  (x)) 

 (NC2)   (F)(y)(x)(xy  F(x)) 

is wrong. The assumption that every concept/property7 has an extension, 

which is a set, is considered rejected. The first order axiom schema (NC1) or 

the second order axiom (NC2) are sometimes called ‘naïve set theory’. They 

were by no means present in all approaches to set theory introduced in the 

19th century. Cantor’s original set theory was concerned with combinatorial 

multiplicities. At times, though, he considered sets as ‘united by a rule’, 

 
5  Historically this is misleading as Zermelo included the Axiom of Choice in his 

system, where he used it to prove well-ordering (in 1908). He also has an extra axiom for 

the empty set, , but as in FOL the domain cannot be empty, one does not need this 

axiom, but gets  by separation. In the 1920s Fraenkel and von Neumann and Skolem 

added Replacement. Zermelo’s original system did not contain Foundation, but his 

system of 1930 does. His 1930 system ZF’ leaves out the Axiom of Infinity as he then 

considered it to be an extra-logical existence assumption. Zermelo’s formulation was not 

confined to FOL, but Skolem’s clarification of ‘definite’ property as used in an instance 

of Separation led to first order ZFC. Cantor already stated and used both the Axiom of 

Choice and Replacement. 
6  ‘Antinomy’ will be used for a contradiction provable given some theory and its logic. 

A ‘paradox’ is just a theorem contrary to our expectations and prejudices. Already 

Zermelo stressed the importance of this distinction, as otherwise one sees the likes of too 

many antinomies where there are only paradoxes. Unfortunately, usage is not so clear 

nowadays. By the way: The antinomy unfortunately called ‘Russell’s Paradox’ was 

discovered some years earlier by Zermelo. It leads back – as many antinomies – to 

negative self-application of a property/predicate, the idea behind the canonical proof of 

Cantor’s Theorem, which served as the context of discovering ‘Russell’s Paradox’. 
7  In the context of this essay I take “concept” and “property” to be synonymous within 

set theories, as is usually done. In (natural language) semantics concepts may be said to 

refer to properties, which are often not taken as sets. Set theoretic ontology is less fine 

grained. A distinction is made between formulas expressing a concept/property and the 

concept/property. CAPITALIZATION is used to signal a concept/property. Reflecting on set 

theory and its relation to our cognition concepts (like the concept SET) are taken in their 

usual sense as cognitive, and whether they are captured and explicated by a theory (say, 

of ‘sets’) is the matter of debate. 
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which sounds like Comprehension. Comprehension was certainly present in 

the logicist approach to set theory of Frege and Russell. 

Now, take a version of Comprehension: the Russell Set, defined as R = {x | 

xx}, and taking ‘xx’ as the open formula (x) or the property F yields the 

famous antinomy: RR ∧ RR. The defining property of NOT BEING A SELF-

MEMBER seems to violate the constitutive assumption behind Naïve 

Comprehension by not having an extension, on pains of inconsistency.  

There is another reading of Russell’s Paradox, however. Proceeding to 

Zermelo’s Aussonderungsaxiom (Axiom of Separation)8 or not-naïve 

Comprehension scheme (of set theory Z) 

 (AS)  (x)(y)(w)(wy  wx ∧ (x)) 

the property NOT BEING A SELF-MEMBER can be used to derive:  

(NU)  (x)(y)(yx) 

the denial of a universal set.9  What Russell’s Paradox shows on this reading 

is that the assumption of the existence of a universal set is illicit. Cantor’s 

Theorem establishes that the powerset (x) of a set x has a larger cardinality 

than x. Cantor’s classical proof refutes the supposition of a bijection  

between x and (x) by considering the subset {x| x(x)}. If x is the 

universal set this naturally introduces the Russell Set (being an element and 

a subset of the universal set). The idea of a universal set thus stands in tension 

to a core ingredient of the concept SET: that every set has subsets, which 

should be collectible. “” is as central to set theory as “∈”: one of them 

provides a sufficient foundation: 

 (D1) x  y ≝ (∀z)(z∈x ⊃ z∈y) 

 (D∈1) x∈y ≝ {x}  y 

 
8  To be precise: It is a schema in the wff . Any set can be separated by this axiom 

schema which corresponds to a wff in the language of the theory. The constructible 

universe L (used in Gödel’s relative consistency proof for the Axiom of Choice and the 

Continuum Hypothesis) consists only of such sets, which requires restricting the powerset 

operation to constructible subsets. 
9  Proof (Outline). Assume U exists. Take U as the base set x in (AS). The first conjunct 

on the right side of the biconditional can then be eliminated, being logically true. One 

arrives at the form of (NC1) and the usual reasoning to the Russell Paradox goes through. 

Reject the existence assumption concerning U by arriving at the contradiction. ◼ This 

proof can already be carried out in a weak subsystem of Z, like Kripke-Platek set theory 

KP. Membership can hardly be indeterminate for a set theoretic realist. Even if this had 

some plausibility for some sets, with respect to U something is in the universe or is not. 

Avoiding the Russell Paradox by banning R from U leaves us with the mystery where to 

put R then, or with the option that some collections cannot be sets, which leads to a 

set/non-sets distinction. Indeterminate membership plays no role here; theories without 

tertium non datur will not be considered here, but giving up tertium non datur may mean 

rejecting both RR and RR. 
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The Powerset Axiom focussing on “”, therefore, deserves a special role in 

any set theory, as Comprehension and/or Separation focus on “∈”. That 

U∈U may seem less unnatural than (U)U and (U)∈U.10 

Comprehension is fine as long as we restrict the domain of objects to be 

comprehended. If we assume that there is no universal set or domain even 

Naïve Comprehension need not lead to the antinomies, as one cannot take 

for granted that R (or a similar cause of trouble) belongs to the objects (sets) 

to be comprehended. (AS) provides the safe formalization of this idea. The 

property NOT BEING A SELF-MEMBER can be taken as having an extension now 

that (AS) has been adopted. Any property has an extension relative to a base 

set. And if a is the base set for an instance of (AS) with ‘xx’, the extension 

of the subset corresponding to NOT BEING A SELF-MEMBER relative to a is a 

itself (as by the Foundation Axiom no set is a member of itself, so that all 

members of a satisfy the condition xx). 

The discovery behind the set theoretical antinomies then consists not in a 

claim about properties 

 (NNC) Not every property has an extension. 

but in a claim about universality 

 (NU’)  There is no universal set. 

Both claims are ontologically substantial and surprising. Hilbert, for 

instance, thought that conception formation was in trouble, as the idea that 

being able to determine whether something falls under a concept does not 

suffice for the concept’s existence.  

The argument against U works with Separation. Using (NC) leads to the 

antinomy. One reading of the antinomic argument can also be that it uses the 

assumption that the Russell Set R is part of ‘all’ objects (i.e. within the range 

of “∀”). The range of “∀” on pains of contradiction thus cannot be 

universal, R lying outside of it. Thus there is no unrestricted quantification 

over all collections. If “∀” ranges over all sets, R cannot be a set after all. 

The collection of non-self-membered sets turns out to be the range of “∀” 

in Z because of the Axiom of Foundation (i.e. turns out to be the iterative 

hierarchy V itself)! In this reading of the antinomic argument again a set of 

all sets is excluded. The reasoning poses two problems we come back to 

again and again: (i) (NC) still allows building the forbidden collections U 

 
10  Even the problem with Frege’s ‘basic law’ (V) goes back to this, since Frege at the 

same time defines extensions as objects (i.e. first order entities) and puts them in basic 

law (V) in correspondence to courses of values (predication) of concepts (i.e. second order 

entities), by Cantor’s Theorem there have to be more extensions of concepts (namely sets 

of objects) than objects (cf. Boolos 1998, pp.135-54). Because of the complete absence 

of a Powerset Axiom we do not consider set theories like KP (Kripke/Platek set theory) 

in detail. 
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and R, and (ii) the reasoning invites our naïve bewilderment where some 

collection is ‘to be’ when outside of the range of “∀”. 

The naturalness of the idea of universality or a universal set may be related 

to the Calculus of Classes (cf. e.g. Hilbert/Ackermann 1928, Chap. 2).11 

Textbooks unhesitatingly speak of a ‘universal class’ here. The Calculus of 
Classes systematizes our reasoning with respect to ‘classes’ of arbitrary 

objects by defining cuts, unions etc. The complement of such a ‘class’ a is 

an absolute complement ā, such that a∪ā is the ‘universal class’. The crucial 

point is that these ‘classes’ of the Calculus of Classes only contain 

individuals of the considered domain. There are no ‘classes of classes’. The 

‘universal class’ is just the domain considered. The ‘classes’ of the Calculus 
of Classes are neither sets nor classes. They obey some axioms (like 

Extensionality), but others (like Powerset) do not apply here. The concept 

SET exhibits much more complexity than the concept COLLECTION OF 

INDIVIDUALS! 

Given the logical apparatus of Z we can even derive: U = {x | x = x} = , 

even though we have: (x)(x = x)!12 

There are several reasons why there is no universal set in ZF: 

1. There is no U because this contradicts Cantor’s Theorem (i.e. because of 

the Axiom of Powerset). For U we should have (U)  U, but this 

contradicts Cantor’s Theorem (as, trivially, a subset has at most the 

cardinality of the superset). [By the way: Hilbert had a similar argument 

working with self-mappings of functions of numbers.] 

2. There is no U because this contradicts the Axiom of Foundation. For U 

we should have U∈U against Foundation. 

3. There is no U by the Axiom of Separation, as shown above. 

4. As, because of further antinomies, there cannot be a set of all cardinal 

numbers or of all ordinal numbers – as was already clear to Cantor – there 

can be no U, which had to contain these sets as separable subsets. 

 
11  In the following paragraph “class” is scare-quoted to make clear that these collections 

are not proper classes, but collections of individuals. 
12  Proof (Outline). If one allows for definition by abstraction in a pure set theory (i.e. 

without atoms, which are not sets) one has to use a scheme like the following:  

{x | (x)} = y  ((x)(xy  (x) ∧ (w)(w = y))∨(y =  ∧ (w)(x)(xw  (x))) 

 

Now, for an instance of this scheme with U = {x | x = x}, assume U  , then the second 

disjunct on the right hand side is false. Therefore the first disjunct has to be true. This 

leads to contradiction again, by the proof for (NU). Thus the assumption has to be 

rejected. [In a set theory with atoms the second conjunct in the first disjunct has to be the 

meta-linguistic assumption that y is a set, cf. Suppes 1960, p.34.] 



 

11 

 

5. There is no U by the Axiom of Pairing in combination with Foundation 

as {U} could be built by Pairing (i.e. U and U again gives {U,U}={U}), 

but {U}∈U contradicts Foundation as {U} does not have an element that 

does not share an element with it (as U∈U). 

The absence of a universal set yields more consequences in Z, ZF and ZFC. 

In Z, ZF and ZFC absolute complements are missing: since subsets are 

separated relative to a base set the complement to a set x is not the collection 

of all things not in x, but only the collection of those things in the base set 

which are not in x. This follows the spirit of Separation, but violates, 

supposedly, our intuition as to complements. Just as Comprehension is 

restricted in Z so is complement building. There cannot be absolute 

complements as the absolute complement to  had to be U. 

As ZF and ZFC are naturally understood by the iterative hierarchy [cf. 

below] their definition of number cannot be Frege’s. Frege used a flat 

universe and defined a cardinal number as the equivalence class of sets with 

the same equinumerosity – or a representative of that equivalence class.13  

Frege defined equinumerosity by means of bijective functions. This cannot 

be done in ZF as, for instance, there are singletons of any rank in the 

hierarchy, so the supposed set representing 1 had to contain elements from 

any rank, but this is impossible for a set (contradicting the Reflection 

Principle): Sets have a minimal rank, the rank at which all their elements are 

present. A collection of sets of arbitrary high rank cannot be a set, and this 

cannot be or represent a number. 

The idea that there is no universal set seems to go against our logical 

intuitions as we have developed them working with quantificational logics: 

There is always a domain of all objects to be quantified over.  

 

* 

 

 
13  In fact, in Frege’s consistent system behind the Grundlagen der Arithmetik the 

concept BEING-IDENTICAL-TO-ONESELF should have an extension, and thus a number: the 

number of all things! The system can, however, not tell us what number this is (cf. Boolos 

1987). 



 

12 

 

The Universe V (of Z, ZF, ZFC) 

 

What then can be the semantics of Z? How are its quantifiers to be 

understood? Although there is no universal set, there is universal 
quantification in Z. The axioms witness this. The Axiom of Separation, for 

instance, says of all sets that for any condition the corresponding subset 

exists. In terms of the iterative hierarchy [cf. below] the axiom talks about 

sets of any rank. 

One issue should be made clear at the very beginning: The metaphors usually 

employed when setting out ‘the construction’ of some sets, say of the 

transfinite ordinals, should not be taken literally as involving some temporal 

procession of arriving at ever larger ordinals, ranks or cardinalities. As sets 

are abstract entities they do not depend in their existence on any one – not 

even God – counting up to them. Sets are simple there. All of them are there. 

The metaphors of construction merely serve to express the structures the sets 

employ, and may serve, sometimes, as didactic devices how we come to 

understand some set on the basis of another collection of sets. Thus, that 

there is no highest rank in ZFC should not be misunderstood as the set 

theoretic hierarchy V being under construction. All sets are there, thus V is 
there. For this ontological thesis and corresponding universal quantification 

it is irrelevant whether we have epistemic means to distinguish that totality 

from any incredibly large, but not total collection/set. 

Like FOL, which does not count its domain to be one of the objects to be 

quantified over, Z itself need not talk about its domain. A stronger meta-

language may be used to model the semantics of Z, typically a second order 

logic (SOL) talking about proper classes, one of which may be the domain 

of Z. We come back to this later.14  But suppose there to be such a model for 

Z. What should the domain of it be called? It certainly looks like a universal 

set, as it comprises all sets. Then Z cannot be complete, since it does not deal 

with all collections of objects/sets. But wasn’t it supposed to be complete in 

its application? V has to be a collection of sets, and can be no set itself in Z. 

Zermelo (cf. 1908) recognized this and concluded from the reasoning about 

the Russell Set that the domain of set theory ‘is not itself a set’. There seem 

to be totalities beyond sets then. 

 

 
14  I use “set” to talk about sets and “class” to talk about proper classes (so called 

because these classes either are not sets or have no corresponding set, both usages are 

common, we come back to the idea of ‘correspondence’ below). “Set” and “class” are 

thus not taken as synonymous here. All claims and theories referred to are adapted to this 

usage; formalisms/symbols are also rendered into the common format used here. 

Following ordinary usage equivalence sets are called “equivalence classes” although they 

are no classes. 
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The standard picture of the realm of sets accompanying ZF and ZFC is, at 

least nowadays, the iterative or cumulative hierarchy. It can be argued that 

Cantor had already a conception of sets congenial to this picture, because 

Cantor thought of sets as build by the iterative application of set building 

functions. Frege’s set theoretic universe, in contrast, has to be conceived as 

flat (non hierarchic). The hierarchy was clearly developed by von Neumann 

(1929), wherefore it is sometimes called “von Neumann hierarchy”. Zermelo 

developed a similar picture in the late 1920s. The Axiom of Foundation and 

the Axiom of Replacement determine this picture. Foundation expresses the 

idea that a set occurs at some earliest level in the hierarchy (as sets are 

build/defined by iteration of set building operations there is some – though 

possibly transfinite – number of preceding set building operations). As 

mentioned before, talk of ‘building’ sets should not be taken as a process of 

construction, but only as an easy way to express structural dependencies 

between sets all being already there. The Axiom of Replacement expresses 

the continuation of ever higher levels (e.g. by collection a transfinite 

sequence of iterations of applying the powerset operator into a single set). 

In the pure version of the hierarchy the starting level (or ‘rank’) V0 is , then 

there are two ways of proceeding to higher ranks 

V+1 = (V)   for successor ordinals  

V = {V |  < }   for limit ordinals  

the set theoretic universe V can then be seen as a hierarchy where later sets 

depend on preceding sets (although, of course, not in a temporal manner). 

The hierarchy is iterative as the two hierarchy building operations are applied 

over and over again. The hierarchy is cumulative as the sets present at V are 

also present at all levels V with  < .15  Each set has some earliest rank of 

occurrence. All ranks are transitive sets (i.e. contain all members of members 

of members…). The strength of the operation of collecting the powerset 

provides the plenty of the next stage. Reflections about how strong the idea 

of a powerset is concern directly the issue of the Generalized Continuum 

Hypothesis (GCH). 

The picture is slightly different in a set theory with urelements. The set of 

urelements M lays at the foundation of the hierarchy V0 = M. The two ways 

of proceeding are accompanied by the requirement that for each V, M  V. 

A corresponding set theory needs to distinguish sets from non-sets and is 

called ZFU or ZFCU.16 

 
15  Remember that   V for any V as V is a set. Thus at V+1  and {} are 

present and thus each stage contains all preceding stages. 
16  Usually the system is called ZFU, with U being the set of urelements. The name 

“ZFU” may thus confuse in the context of our investigation into the existence of the 

universal set U. Nonetheless we stick with the usual name “ZFU” as urelements and thus 
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Thus, one can picture V as either a pure hierarchy of ZF, ZFC (upper part 

in the picture) or a hierarchy based in domain of non-sets (lower part).  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZFU has a broader base than ZF. The dots before V indicate that V is the 

first limit level (of transfinitely many). 

Z takes us with the Axiom of Infinity to V, but not to arbitrary high ranks 

in V. We need ZF (i.e. Replacement) to go further. By Replacement we 

know that the function in n for n∈ which takes as value the n-time powerset 

of  has as range a set, since  is a set (by the Axiom of Infinity). Therefore 

(by the Axiom of Union) the union of all these powersets exists as a set, and 

 

ZFU and ZFCU play no vital role in this book. For us it is important to distinguish the 

set of all sets U from the class of all sets V, so we need the name “U” in addition to “V”. 
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thus as a next rank in V. Now we can move in ZF beyond V+. Note also 

that in this rank all other ZF-axioms are satisfied, while – by Foundation – 

the rank is not a member of itself, which establishes the independence of 

Replacement from the other ZF-axioms.17 

Up to V we find in pure set theory the hereditarily finite sets. They fit 

naturally to defining the ordinals in von Neumann’s way: n+1 ≝ n ∪ {n} and 

take  as 0. Then in V a transitive set of transitive sets is a number. We get: 

n∈Vn+1, nVn, Vn∈Vn+1, VnVn+1. Ranks and numbers thus are ∈-ordered. 

The hereditarily finite sets fulfil the axioms of ZFC save the Axiom of 

Infinity, although the Axiom of Choice and the Axiom of Replacement 

become unimportant here: The Axiom of Infinity is thus independent from 

the other ZFC-axioms. The finite system is sometimes called: ZFC-. In fact 

one could add an Axiom of Finiteness here:  

¬(∃x)(x ∧ (∀y)(y∈x ⊃ y∪{y}∈x)) 

Obviously, the Axiom of Finiteness is true up to V, i.e. for all hereditarily 

finite sets. And equally obviously V (i.e. the domain of that theory) is not 

finite. We meet the same situation as with Quine’s basic finite arithmetic [in 

chapter III]. Even ZFC- can do what Peano Arithmetic, PA, does: prove 

theorems concerning representability and provability (e.g. Tarski’s and 

Gödel’s theorems.18  Note that the hereditarily finite sets provide an intended 

model for ZFC- (i.e. in contrast to other unintended countable models for 

ZFC). Note also – and this may be thought to be important – that Naïve 

Comprehension causes no trouble within the hereditarily finite sets. The 

Russell Set, for instance, does not exist up to V as it contains all hereditarily 

finite sets, since they satisfy Foundation, and thus is infinite. If the set of 

urelements is finite as well – as one may expect in a finite physical universe 

– this finite consistency of Naïve Comprehension may be the background of 

 
17  Remember not to confuse the indices of ranks above V with theses about the 

cardinality of the rank itself, the order type of its largest member or the index number 

occurring for the first time at that rank. +1 (i.e. {2,3,4,…1}), +2, +3 etc. are, because 

they are order types (i.e. relational) subsets of , thus countable, thus sets of ordered 

pairs (i.e. given the usual definition of ordered pairs, sets of sets of sets of natural 

numbers) being subsets of V+2, members of V+3. These ranks have cardinality 2, 3 

respectively and contain many, many ordinals. The set of real numbers, under the usual 

construction (as a set of sets of sets of natural numbers), is a subset of V+2, member of 

V+3, and is uncountable, whether it has a order-type (not just a simple ordering, but a 

well-ordering) is not obvious and is ensured only by ZFC, not ZF.  
18  Cf. Fitting 2007. The Peano/Dedekind-Axioms for the successor function and 

induction follow easily in Z from the Axiom of Infinity. Taking natural numbers as von 

Neumann ordinals makes obvious that 0 is no successor and that the successor relation is 

functional. Induction follows since an inductive property is inherited by the successor 

relation, thus contains . 
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our intuitive support of Naïve Comprehension. Let us note this as a theorem 

(“y” not occurring in  as always): 

(FNC) |{x|(x)}| < 0 ⊃ (∃y)(∀x)(x∈y  (x)) 

Let us leave ZFC- behind and look at all ranks in V. With a little pretense 

we can say: In the iterative hierarchy exists at some rank any proper subset 
of V, i.e. (a) pretending for the moment that the non-set V has subsets and 

(b) speaking only about collections that can be sets (excluding a set of 

ordinals etc.). We can approximate Naïve Comprehension up to an arbitrary 

rank: y = {x | (x)} exists for any  as long as the rank of y <  for some 

ordinal . The set y exists then somewhere below . We can say in general: 

If a set x exists x has some rank.19  Existential statements are, if true, true in 

parts of V. The Principle of Reflection correspondingly claims that if a 

general sentence or a finite collection of sentences in the language of ZFC 

is set theoretically true, there is a least rank V which can serve as its model 

(with variables in the sentences bounded to rank V).20  One might expect 

that as all specific sets mentioned in a sentence have a rank. Limit ranks 

ensure this structure. Once again – as with Naïve Comprehension – we seem 

to approximate talk of all sets! The Reflection Principle is equivalent to the 

Axiom of Replacement.21  So the fully developed picture of the iterative 

hierarchy established by Replacement approximates universal set theoretic 

talk. Unfortunately, this would be too good to be true.  

On the one hand we approximate universal set theoretic talk. And not just – 

one may claim (as Kreisel 1967 did) – set theoretic talk: Set theory can be 

considered to be our strongest formal system, the system to be used in the 

meta-theory of all other systems. Then: If some claim in some informal 

 
19  Proof (Outline). If x existed without a minimal rank at which it exists, x would 

contain all ordinals as a subset, which is impossible. 
20  This does, of course, not hold for an infinite collection of sentences as all infinitely 

many instances of the schema of Replacement enforce V. The Principle of Reflection is 

another reason why ZFC cannot be finitely axiomatized: If ZFC could be finitely 

axiomatized, then it would establish – by the Principle of Reflection – a model of itself, 

thereby establishing its own consistency, contradicting Gödel’s Second Incompleteness 

Theorem.  
21  Proof (Outline). The Reflection Principle entails Replacement, since if the antecedent 

of Replacement is true, there has to be a rank V modelling it; the set postulated as 

existing in the consequent of Replacement will be a subset of that modelling rank V. 

Replacement entails each instance of the Reflection Principle in going through the 

quantifiers of the finitely long compound (x)(x) taking the lowest possible rank of 

satisfying instances (which have to be there to make (x) true) and uniting them and their 

dependencies (by a Replacement function) into a highest most comprehensive rank, 

which thus models (x)(x). ◼ Omitting the Replacement schema and restricting 

separation to formula  with quantifiers bounded to some set provides a further weakened 

theory Z- (also known as ‘MacLane Set Theory’), which nonetheless proves sufficient for 

most of mathematics. 
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system is intuitively valid and can be captured in some formal system it has 

a set theoretical model. Kreisel’s Thesis so states: Whatever is valid is valid 

in a set theoretical model, and if – as we may suppose – finitely many 

sentences were used in that piece of reasoning, it is valid at some rank V. 

On the other hand, however, we, obviously, shift the domain of reference 

from V to some rank V. So, a universal statement (say, the Axiom of 

Pairing) does no longer talk of all sets, but only of those up to V. Seen in 

this light the Principle of Reflection resembles the Löwenheim/Skolem-
Theorem in allowing for non-standard or unintended models of universally 

quantified set theoretic sentences. As V can be arbitrary high one may see 

this as less concerning than the countable models ensured by the 

Löwenheim/Skolem-Theorem. If V is a sufficiently high transfinite rank we 

approximate universal talk. We can also understand the possible shift of 

domain of reference as underlining the insight that universal set theoretic talk 

is bound to strong axioms like Replacement.  

The universe V is not reached by any ladder (‘construction principle’) used 

within it. It is as strongly inaccessible by such steps as it can be. Otherwise, 

we only have a temporary halting point V. V is no number, is no set, no 

union or power of sets. V can only be thought as sui generis. How do we 

know this? Because otherwise it could be superseded in one of the usual 

ways. We thus have a transcendental argument concerning V’s nature: it 

cannot be otherwise, since otherwise it wouldn’t be. 

Without the Axiom of Foundation or endorsing an Anti-Foundation Axiom 

the realm of sets is larger containing with the unfounded sets more collection 

like entities. Where are these collections collected in? U seems a good 

candidate for a collection of unfounded collections as U∈U itself. But 

unfortunately, Z forbids U. Are unfounded collections sets? Or does our 

concept SET entail that sets are grounded collections? In this case we had the 

problem that on the one hand we had to endorse the Axiom of Foundation, 

but this excludes U from our set theory. If sets are abstract entities nothing 

seems to exclude that they contain themselves as all spatial images are 

inappropriate. Picturing non-well-founded sets by graphs (cf. Aczel 1988) 

shows easily membership bending back to its origin. Anti-foundationalist set 

theories contradict our concept of set, however, if set identity becomes more 

than identity of membership (cf. Aczel 1988, chap.4). The iterative hierarchy 

motivates our picture of sets as well-founded by stressing the idea of 

ontological structural dependence between a set and its members. In this light 

a set containing only itself, x ={x}, seems unnatural. U, in contrast, contains 

besides all other things itself. We might recognize U as a set sui generis and 

allow for U what we do not allow for other sets. Foundation would make an 

exception for U. But the exceptions would not end here as U, being subject 

to the others axioms if still a set, is exceptional – even inconsistent – with 

respect to Cantor’s Theorem, for instance. Foundation certainly is built in 
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the iterative hierarchy and V does not pose the problems with respect to 

Foundation that U does. According to the story of the iterative hierarchy, 

unfounded sets do not exist. The Axiom of Foundation follows from the set 

up of the cumulative hierarchy. The two conditions to proceed to higher 

ranks ensure the axioms of Pairing, Sums, Powerset and Infinity. Coupled 

with the idea of sets being extensional the structural properties of the iterative 

hierarchy thus entail the ZF axioms (cf. also Boolos 1989). 

There are – besides the question of an Anti-Foundation Axiom – 

incompatible set theoretic axioms (like the Axiom of Choice vs. the Axiom 

of Determinacy22), which shows that there are related realms of set-like 

entities (sharing the basic axioms), but which cannot be consistently united. 

There might be a unified inconsistent realm of all these sets [cf. Chap. V]. 

Even the incompatibility need not show that our concept of set is not settled. 

One of the set theories may be thought to be more natural. Even a concept 

SET settled in its basic aspects (like set separation and powerset existence) 

may leave some questions unsettled. The (Generalized) Continuum 

Hypothesis is the best-known example. The simple Continuum Hypothesis 

[¬(∃x)(0 < |x| < 2o)] is even independent of the Axiom of Choice.23 

V has sets of arbitrary high rank. V itself does not occur in the hierarchy 

itself. V taken as the proper class of all ranks in V is a model of ZF. If V 

exists ZF is consistent, as V satisfies all its axioms. Large cardinals (strongly 

inaccessible cardinals beyond the reach of any set building operation by 

 
22  Cf. Jech 2003, pp.627-43. The Axiom of Determinacy in so-called ‘Descriptive Set 

Theory’ contradicts the Axiom of Choice, what one may take to be bad enough. It also 

entails some strange results for large cardinalities (like 1, 2 being measurable 

cardinals, but 3 … not being measurable). ZFC seems closer to our conception of sets 

in this regard. 
23  Proof (Outline). Alephs are defined as infinite well-orderable cardinals. The Axiom 

of Choice is equivalent to the statement that any infinite cardinal is an aleph (as it implies 

the Well-Order Principle). Negating the Axiom of Choice (and thus the Well-Order 

Principle) one may endorse the simple Continuum Hypothesis but maintain 2o  1, 

since one may now deny that the Continuum can be well-ordered, whereas the 

combination with the Axiom of Choice entails 2o = 1, since the Axiom of Choice 

entails that any infinite initial ordinal is an aleph. ◼  

Cantor proved in 1883 that there is no cardinality between the cardinality of the collection 

of finite ordinals (0) and the cardinality of the collection of all countable well-orderings 

of , that cardinality thus being the next well-orderable cardinality: 1. Given the 

Continuum Hypothesis 2o is the cardinality of all countable linear orderings of . Given 

the Well-Order Principle thus 1=2o.  

The Generalized Continuum Hypothesis (GCH) entails the Axiom of Choice: Using the 

first aleph GCH claims for all infinite cardinals x = 2y+o. x = 2y+o entails x being an 

aleph, which makes y an aleph. The GCH thus excludes that there are cardinals in between 

well-orderable cardinals (i.e. in between well-orderable sets), so that via its respective 

cardinal number any set can be well-ordered. ◼ (On arguments and intuitions around CH 

and GCH cf. Potter 2004, pp.266-82; Maddy 1988, §2.) 
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being uncountable, regular and greater than 2 for any preceding cardinal ), 

if existing, are such models as well. For V the axioms of ZF are construction 

principles and thus trivially satisfied. For (strongly) inaccessible cardinals 

the important observation is that they are assumed to be just larger transitive 

sets. Take the least such cardinal; any function within it is of lower rank as 

the cardinal itself; thus, the range of the function is a set, which has this least 

inaccessible cardinal satisfy the Axiom of Replacement – the other axioms 

are obviously satisfied again (cf. Jech 2003, pp.165-67). 

Having all subsets of a rank present at the next rank suits the Axiom of 

Choice: If a family of non-empty sets x exists at some rank V, the members 

y of that family exist already at lower ranks V with <, and their members 

z exist already at lower ranks V with < (relative to a  for some y); thus as 

these z are elements of some V a set w containing one of them for each y∈x 

exists (at the latest) at the rank V of x. Choice is natural in the iterative 

hierarchy. V rather corresponds to ZFC. 

Once we have one of the inaccessible cardinals or the class V of all sets we 

have a model of ZF and could be content with respect to our theory of sets. 

So, should we care about their nature? 

Leaving V to the side for a moment let us consider large cardinals. We have 

just talked about them, so we know something about their nature and we can 

ascribe properties to them. So, they should be the objects of some theory. 

Zermelo thought of strongly inaccessible cardinals (his ‘Grenzzahlen’) 

forming themselves an unbounded sequence. This, however, implies that we 

quantify over them, and are again in the situation of asking over what domain 

now our quantifiers run. Is this collection of Grenzzahlen itself some 

Grenzzahl? Supposedly not to avoid antinomies of the Burali-Forti-type. 

Then again if we now introduce Super-Grenzzahlen we can start all over 

again with them – and once more the whole process iterates. Zermelo 

thought: ‘This series reaches no true completion in its unrestricted advance, 

but possesses only relative stopping-points, …’ (1930, p. 47). 

Now, this way of thinking may be innocent for a constructivist, but for a set 

theoretic realist the idea that sets have to come into existence is simply 

wrong. Placing them at some rank in the hierarchy does not mean that they 

come later (in time?) than the other sets. Frege’s universe is anti-

foundational. And for a Platonist an anti-foundationalist universe has the 

advantage of keeping all ideas of stepwise construction at bay. As all abstract 

objects are there they exhibit some ontological dependencies, but this does 

not require that some are before or beneath others. Impredicativity is no 

problem in such an anti-foundational universe. Zermelo himself rejects any 

spatiotemporal associations. A well-ordering ‘has nothing at all to do with 

spatiotemporal arrangement’. He also thought the term “choice” to be 

problematic as one may associate (temporally) successive choices being 
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performed, where we have only a representational/selectional correlation (cf. 

Ebbinghaus 2007, p.69, 135). The ranks express a structural dependency 

only. All ranks are there. In the same way all of that coming beyond the set 

theoretic ranks (i.e. any large cardinal) is there. Thus, there should be a 
collection of it all. Assuming a sequence of large cardinals thus does not 

seem to solve the problem of collecting sets, but either adds the issue of an 

incomplete universe or means that V contains them all and only our set 
theory, say ZFC, is not complete yet and has to be strengthened by further 

axioms.  

The issue of large cardinals is independent from that of the universe of sets. 

If one can argue that some idea of some type or large cardinals comes from 

our concept of sets – say, why should 0 be the last inaccessible? – then 

these large cardinals may be thought of as stages in V above those which 

ZFC (so far) treats of. Any type of closure operation on preceding collections 

should correspond to a set within V. This idea resembles the content of the 

Reflection Principle: Any finitely specified closure condition can be 

modelled by some rank. Large cardinals may provide a universe and a model 

for ZFC, but they differ from classes in being collectable themselves and 

thus being members of the overall universe of (extended) set theory. Another 

argument for such additional sets stems from Scott’s proof that VL given 

large cardinals, as the notions of (unrestricted) powerset and uncountability 

stand in conflict to V=L. The constructible universe seems unnatural, even 

though V=L entails the Axiom of Choice and the Generalized Continuum 

Hypothesis, excluding it speaks in favour of large cardinals. The 

constructible universe violates the idea of purely extensional sets inasmuch 

as pure extensionality should allow for sets beyond any descriptive powers. 

One might think that it follows the idea of Naïve Comprehension, that sets 

correspond to properties, but why should all objective properties correspond 

to formulas in the first place? Proceeding to the next rank by the full powerset 

operation suits the simple idea of the powerset. Curtailing the powerset to 

subsets which are definable leaves out sets that should be there. 

V is the ultimate model of the universe also in the sense that constructions 

like ‘forcing’ or means of building ‘inner models’ start from V (cf. Arrigoni 

2007; on the formal details cf. Jech 2003, pp.175-223).24 

The iterative hierarchy does not know several classes. It might be preferable 

not to call V a class, but to treat of V as a very special object in its own right 

– an issue of axiomatic ontology. If we call V a class it is not to be thought 

of in the manner of NBG or MK, since there is no part of set theory which 

 
24  Leaving here to the side the problem that such models are non-standard or 

unintended, e.g. in being countable; cf. the remarks in the next chapter on limits of 

expressivity. One may add that inner models like L, which restrict the powerset operation, 

but satisfy the others axioms in their standard reading (relative to the shrunken universe), 

are less non-standard than models generated by forcing. 
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addresses it, like Comprehension and Limitation of Size address classes in 

NBG or MK. V is not in the range of set theoretical quantifiers. It is not in 

the domain. Calling V ‘a class’ in the context of the iterative hierarchy and 

ZFC means there exists only one class (outside of our theory of sets).25 

V is the range of the quantifiers in ZFC. Cantor claimed that every potential 

infinite presupposes an actual infinite ‘and cannot be thought without it’ (cf. 

Cantor 1887). This is the Domain Principle: Speaking of and quantifying the 

x presupposes the domain of the x.26 

V is a very special entity, both within the picture of the iterative hierarchy as 

in our meta-theory modelling our theory of sets. V has no subsets as V is no 

set. V is not well-ordered – even in the presence of the Well-Order Principle 

only sets are well-ordered. V is not the domain of a (replacement) function, 

sets are – and so on. V contains all ordinals and all cardinals, but there is 

neither a set of all ordinals nor a set of all cardinals. They cannot be 

established as subsets of V, since V is no set (and thus Separation does not 

apply to it). 

For V to be more than a stopping point to be superseded V has to be an entity 

sui generis. This means informally that V is exactly what the picture of the 

iterative hierarchy shows it to be. V is determined, not indefinite, and unique. 

Formally this means 

• that V cannot be an element of whatsoever other collection – on pains 

of re-introducing distinctions of the set/class-type 

• that there are no other entities of V’s type (not a collection of proper 

classes) 

• that V is an entity which can be talked about by its name, without 

including it into a domain of reference. 

V is not a standard object of (set theoretic) model theory. The only thing V 

‘does’ is containing all the sets. A universally quantified sentence of pure set 

theory is meaningful as there is an entity which provides all the variable 

values: V. 

A unified language has to distinguish urelements, sets and V. Again: V 

cannot be unified with them in a domain. The name “V” refers to V rigidly. 

End of story. 

 
25  At some time, Cantor considered distinguishing several ‘absolutely’ large, 

‘inconsistent’ collections (like those of all ordinals or all cardinals). But they play no role 

in a transfinite set theory based on standard logic. Even apart from producing antinomies, 

these collections play no indispensable role in proofs about sets. So, Cantor came to 

consider the single absolute, inconsistent totality beyond any further increase. 
26  Cf. Moore 1990, pp. 114-22; Tiles 1989, pp. 95-107. The principle sometimes – 

ignoring Cantor? – is discussed as ‘All-in-one Principle’, going back to (Cartwright 

1994). 
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Given the difficulties in understanding an incomplete universe and the 

fundamental role of a Domain Principle, why don’t we just talk about V 

without assuming it to be the value of a bound variable? This appears 

reasonable as doing otherwise land us in an incomprehensible framework of 

indefinite existents. 

Assume we do not give up on the infinite, whether we are Platonists or 

fictionalists or whatever else. There are then infinite collections. Comprising 

within them all of a kind not collectable item wise by finite beings. We 

collect them using our concept COLLECTING. If we talk about the Fs we 

naturally assume that there is a collection F where they are in. Cantor’s 

Domain Principle expresses this idea that the Fs we quantify over or talk 

about can be collected into a totality. Sometimes the totality has to be of 

another type to avoid antinomies (e.g. in the set/class-distinction). As there 

seems to be no limit to this procedure we always progress to a wider 

domain.27  The Domain Principle thus enforces the idea of the incomplete 

universe. A domain is added to the objects, giving a larger domain, which is 

added to the objects – and so on. 

Unless, that is, we meet a fixed point in this progression. Informally, the 

totality of things to be thought of or to be talked of can be thought or talked 

of: it belongs to the very domain it defines. Thinking of ‘the domain x is in’ 

applied to it leaves us at it. Thus, it may be called a fixed point of the Domain 

Principle. 

As intuitive as the Domain Principle may occur to us, leading us up the 

ladder of the indefinite may be too much, as we have seen above. We might 

accept that the whole construction has a limit: a collection beyond further 

collecting. There lays the naturalness of Limitations of Size: There is one 

size too big to be collected into a set. This collection better not be the set U 

to avoid severe complications in set theory, otherwise rather intuitive. So one 

may see the idea behind Limitations of Size without endorsing NBG or MK, 

or any other set/class-theory. Nothing is gained by having (several) classes. 

With a collection of classes the question of their collectability immediately 

arises. 

The single limit object V might be different. 

If that limit object V exists – neither a set, nor an extended set like an 

inaccessible cardinal, nor a class – ZFC is consistent. And if our intuitive 

notion of set rather endorses the General Continuum Hypothesis, we add it 

 
27  Recently Rayo and Williamson (2003) and others have argued for ‘unrestricted First-

Order languages’, i.e. for quantification without a domain. The formal proposal, however, 

must employ SOL and a richer meta-language for which similar problems arise. One may 

also consider the employed SOL as critical and problematic (cf. Weir 2006). Unrestricted 

quantification is only unrestricted beyond an object/meta-language distinction. 
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as well: ZFGCH is consistent, if V exists. Our notion of set suits V, and vice 

versa.  

This conception of V as collecting all the sets but being a special limit object 

may correspond better to our concept SET than taking set theory just as the 

realm up to the first strongly inaccessible cardinal. [The Cantor quote setting 

the theme may illustrate this perspective.] Someone might argue that our 

concept SET takes us thus far, but that there are other mathematical objects 

and theories (especially those of large cardinals, measures etc.), which pick 

up the baton where ZFC hands it over. Although this sounds like a nice 

division of labour, the large cardinals are too set-like to provide a natural 

boundary to our concept SET, supposing it to fit to ZFC in the first place. V 

is a stop point, the first inaccessible cardinal is not. And large cardinals – 

again – give rise to the question where their hierarchy is collected in, inviting 

and requiring V or some V’, landing us again in an incomplete universe. V 

is not an incomplete universe at all: although we cannot walk, count or 

‘powerset’ us up to it, V contains all sets; they are not in the making, there 

are no processes of indefinite extension going on. In this respect V as an 

object at the limits of thoughts differs from the row of experiences discussed 

by Kant in the Critique of Pure Reason: Kant traces the antinomies to their 

common error of taking the series of experiences, which is only given 

piecemeal and prospectively (‘aufgegeben’) as a ‘given’ totality. As 

experiences are obviously under temporal construction their series can never 

be united – by whom? In an experience? Sets, in contrast, are not 

(temporally) constructed and thus should be collectible in a unity. Thus far 

we are carried by the Domain Principle. At that limit we ‘simply’ have V as 

an object, and stop adding it to a domain. 

Our concept of SET may force stronger set theoretic axioms on us. This 

shows, however, not the incompleteness or growing extension of V, but the 

incompleteness of a theory like ZFC. Urelements and  have no members, 

but are members; sets have and are members; V has members, but is not a 

member: it occupies a slot in conceptual space.28 

We may say: our idea of V is an idea contained and connected to our concept 

SET. The special nature of V is forced upon us by the unfeasibility of the idea 

of an incomplete or thought independent but growing set theoretic universe. 

We know of V by the picture we have of the iterative hierarchy and the 

structural relations between the ranks. 

This conception of V follows some intermediate path between the two 

ontological traditions in analytic philosophy. On the one hand there are 

reasons of conceptual analysis why V suits our concept SET. On the other 

hand, some peculiar postulates need to be laid down for V. “V” is a rigid 

 
28  The slot of neither having members nor being a member finds no existing filler, if 

there is not David Lewis’ atomless, uncollectible ‘gunk’. 
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designator naming an entity which does not belong to some domain of 

quantification, although all other entities and referents of names do! 

The major difficulty here would be to allow for a level or form of meta-

theory when talking about V which is outside of any formal system. That 

way may lay ineffability or some version of ontological semantic mystery! 

Comparing noneism, the incomplete universe and the thesis of V being an 

entity sui generis, the third idea comes out best in its combination of 

conceptual analysis and axiomatic ontology. If an inconsistent or noneist 

ontology is too much to swallow when taking on such a paraconsistent 

system, then we have to opt for at least partial fictionalism with respect to 

(some) entities proposed within paraconsistent set theories. Then the 

exploration of universality in set theory naturally awaits a further thorough 

exploration of fictionalism. Too many difficult questions wait there: Fictions 

like fictional characters in literature depend historically and genetically on 

their authors, and maybe on still existent copies of the literary work and 

living readers (cf. Thomasson 1999), nothing of this sort can be said of pure 

sets. Pure sets (like in ZFC) are not just presented as abstract entities outside 

of space and time, but their presentation (the story told by ZFC) arguably 

does not depend on any particular set theorist – not even Cantor, Frege or 

Zermelo. There might be several intermediate ontological categories 

between such purely abstract entities and spatio-temporal entities (cf. 

Thomasson 1999, pp. 120-33). Even in ZFCU one may wonder about the 

singletons of contingent urelements like the Cologne Cathedral: It seems 

bizarre to assume it to exist before the building was finished or even planned, 

thus this set seems to have a historical place! The recent interest in 

fictionalism may lead to increased ontological options. 
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