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Any mathematical consideration must
be founded on the notion of ‘allness’ or
‘quantification’ as a basic category of
logic which cannot be subject to further
analysis whatsoever.

(Ernst Zermelo)

What surpasses all that is finite and
transfinite 1s no “Genus”; it 1s the
single, completely individual unity in
which everything is included, which
includes the “Absolute”, incomprehen-
sible to the human understanding.

(Georg Cantor)

Standard symbols are used.

©(x) is the powerset of x.
x| is the cardinality of the set x.
= is used in rule statements

Greek letters @, v ... are used as schematic for unspecified formula or predicates (open
formulas) of a given language. I', X, I'T are mostly used for sets of formulas.

CAPITALIZATION is used to signal that we now talk about a concept.

Single quotation marks are used in quotes and as ‘scare quotes’ of established terms.
Double quotations marks quote an expression. Names of famous theorems are italicized.

M is the set of urelements
U is the universal set

v is the complete iterative hierarchy, Va a rank in the hierarchy




Introduction

This essay discusses the fate of universality and a universal set in several set
theories. It presupposes a general background in logic and general
knowledge of set theoretic basics. Even basic points are repeated if the
context of discussion profits from a short reminder, but no systematic survey
of the different systems is attempted. The book aims at a philosophical study
of ontological and conceptual questions around set theory. A formal
exposition of some consistent set theories with a universal set and related
theorems can be found in (Forster 1992) and the sources mentioned there

Set theories are ontologies. They posit entities and claim that these exhibit
some essential properties laid down in the set theoretical axioms. Like
Zermelo (in the opening paragraphs of Zermelo 1908) Fraenkel, in his early
introduction to set theory (1919/19282) explicitly outlines this axiomatic
approach:

According to the essence of this method we refrain to define the concept of
set or to analyze it, we rather start with some axioms in which the concept of
set like the relation ‘to be contained as an element’ occurs, and in which the
existence of some sets is postulated. The concept of set is implicitly
established by the totality of these axioms.

Collecting these postulated entities poses the problem of universality. Is the
collection of the set theoretical entities itself a set theoretical entity? What
does it mean if it 1s, and what does it mean if it is not? To answer these
questions involves developing a theory of the universal set. For a start we
may define the universal set as U = {x | x = x}. As set theories extend first
order logic with identity (FOL) or some variant of it (in a non-standard logic)
they contain the axiom: (Vx)(x = x). U thus comprises the whole domain of
the language. Tautologically whatever exists exists. So, supposedly, there
are all existents. Why not continue: So there is the totality of these existents?
Why shouldn’t they be collectible? After all, set theoretical quantification
runs over all sets, doesn’t it? If, however, that totality was an additional
entity we could collect another totality including it — and so forth, it seems.
Unless this totality possessed a nature sui generis, setting it apart from
ordinary things and sets.

Some of the set theories are pure set theories: their domain consists entirely
of sets, all variables range over sets. Some of the theories contain proper
classes in addition to sets (improper classes). Some theories contain
additional ‘urelements’ (i.e. objects which are neither sets nor classes, but
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something to be collected into sets or classes). Some other theories use
numbers as basic entities, not reduced to set theoretic construction. The
discussion here will mention these differences, but will not use a neutral
formalization, which applies to all theories; this would require using one type
of variables and sortal predicates like “set”, “ordinal” etc. to restrict
quantification to the appropriate type, e.g. “(Vx,y)(Set(x)ASet(y) o ...”. The
drawback of this formalization would be its contrast to the respective
textbooks and articles. Additionally, it would be very cumbersome, e.g.
having all the sethood statements in pure set theories like Z, the
axiomatization of which would include now a new axiom “(Vx)Set(x)”,
which had to be used all over to get rid of the sethood requirements in the
antecedents of statements. Thus, when discussing mixed type systems sortal
predicates may be used, but not with pure set theories, and not with systems
which only distinguish sets from (proper) classes; in the latter case lower
case variables refer to sets, upper case variables to (proper) classes.

The existence of urelements is important for the broader ontological picture,
but the presence or absence of a basic set of urelements does not change the
treatment of universality in many set theories (like ZFC). One may ask
oneself what sort of things might be chosen as urelements. If physical entities
are chosen, there are — in the light of our best physical theories — only finitely
many of them, which can be collected into a set of urelements. Physical
objects may have their own principles of composition (like mereology).
Their presence does not influence the question whether all sets can be
collected into a universal set. Once sets are present, there seems to be no
need for further elementary logical (abstract) entities like numbers. A
collection of urelements that matches the sets in cardinality seems highly
dubious, as one may suppose every urelements to have a singleton and any
two of them to be elements of their pair set — etc. In some cases (like
Specker’s Theorem) we have to talk about urelements.

Several issues related to set theory will not be discussed here: We are not
much concerned with the epistemology of mathematics in general or set
theory in particular. With respect to epistemology all the theories discussed
here are prima facie in the same boat. We may, however, raise some
questions concerning whether understanding universality raises additional
epistemological problems. We start with the ordinary working assumption
that we have some concepts and ideas of sets and numbers and set theory
tries to systematize them. Therefore, we will not be concerned with the
general issue of abstractness or ‘Platonism’ either. Again, prima facie, all the
theories discussed here are in the same boat. We may raise some questions
concerning whether some ways of understanding universality or the set
theoretic universe raise additional ontological problems.



For the set theoretical anti-realist our study is just a case study in formal
ontology and its models. Nonetheless some such ontologies might be more
useful than others even if all are — strictly speaking — false, as there are no
sets whatsoever. Even if there are no sets some set ontologies may be more
helpful fictions than others. They help in systematizing mathematics, which
again, even if without subject matter itself, helps as part of science in
describing reality. Even Russell held at times that sets are just a manner of
speaking, but not part of the furniture of the world (cf. Russell 1914).
Nonetheless as they correspond, for Russell, to the fundamental
‘propositional functions’ talk about them is neither arbitrary nor idle. One
theory is singled out as capturing or founding our mathematics.!

For the set theoretical realist one set theory might be better in capturing set
theoretical reality than another. Either one has to assume U or one has to
assume that U does not exist. Our study then is one attempt to ascertain
which option we have to take. Even if one endorses ‘plenitudinous
Platonism’ (the thesis that al// consistent mathematical theories correspond
to some part of the realm of abstract entities?) the issue of U is not idle. The
different set theories might then be taken to deal with different areas of
abstract entities. In one area there might be something like U in the other
area not. Nonetheless, one may argue that one of the areas has more right to
be considered as making up sets as we have an intuitive notion of SET, which
may be explicated better in one theory than in another. Even if there are
several areas of abstract entities which are set-like one area may be the
intended standard model corresponding to our concept of SET. In this
perspective our study is concerned with the conceptual issue of analysing
our concept of sets. Comparing the different theories and weighing the
advantages and disadvantages of incorporating U into a set theory (i.e. the
gain and the strain of related theorems/facts in relation to our intuitive
understanding of sets) we may come to a result whether our intuitive concept
SET involves the assumption of a universal set or rather some other picture.
Even if set theory was not of sets in the referential sense (as there might be
no sets at all) set theory would be of sets in the intensional sense of setting
out our conceptions of sets. And our question here is whether the universal

' Tronically Russell demanded at that time, of course inspired by the antinomy of the

set of non-self-membered sets, that saying either that a set is a self-member or that it is
not should be meaningless (not just false). A requirement which excludes the Axiom of
Foundation. Naturally Russell thought in terms of his theory of types, which by definition
fulfils this requirement, but, nevertheless, was laying down conceptual constraints on a
feasible concept of set.

2 Cf Balaguer 1998. The view that consistency proves sufficient to take a
mathematical theory seriously has many variants. These include Hilbert’s formalism and
fictionalism, a theory of course denying the existence of abstract entities. Included is as
well Cantor’s ‘theological Platonism’, which has all consistent transfinite entities existing
as ideas in God’s mind.
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set crucially belongs to these conceptions, or whether it is an idea at the
periphery of these conceptions, only to be rejected on second thoughts about
its consequences.

ZF asserts that some collections we have naively thought of as sets (the set
of ordinals, cardinals, the universal set) are not sets — i.e. they do not exist
for ZF itself. Most surprising is this claim for U, as {x| x = x} seems so
natural. That our untutored intuitions have to be partly corrected at the
foundation of science, however, occurs not just in ZF but — one may well
argue — at the foundations of physics (e.g. with our untutored intuitions about
the locality of particles or the properties of time) or in biology (e.g. with the
changeability of some organisms’ essence/species). Thus the mere correction
of our prior, untutored understanding of a basic concept does not establish in
itself that ZF goes wrong. The argument has to concern whether this is the
best option, what repercussions this step has, and whether the resulting
concept of sets provides a more coherent (unified and comprehensive)
understanding of sets.

The antinomies of semantics and set theory have to be treated somehow to
provide a coherent systematic account of the notions involved. The same
applies to the presupposed concept UNIVERSALITY in set theory. One can well
do in large parts without treating these problems. Many a textbook works
with informal set theory. They miss then, however, a comprehensive account
of sets. What their success — inter alia (compare similar arguments in
semantics) — shows is that the problems occur placed within an otherwise
viable world view or viable procedures in semantics or set theory, say some
version of semantic realism or of constructive representationalism. I,
therefore, neglect theories that argue from antinomies and universality to
some form of mysticism, ineffability, anti-representationalism, or what not.’

3 Patterson (2008) extends his anti-representational program to mathematics.

Postmodern authors endorse Wittgenstein’s Tractarian mysticism about ineffability.
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The following issues set the theme for much of the discussion here:

1. How can one avoid slipping into a ‘theory’ that universality is
ineffable?

2. Are there different aspects to universality in set theory, which stand in
conflict to each other?

3. What aspects of universality are embedded within our concept SET?
and most importantly:

4. How far can axiomatic ontology take us in postulating our way out of
the problems around universality?

The treatment of universality in standard set theory ZF raises issue (2):
universal comprehension and universal collection (into a domain of all sets)
seem to be incompatible. The spectre of ineffability, issue (1), raises its head.
We have to ask whether ZF(C) has a claim to be ‘natural’ or ‘intuitive’ for
us, issue (3). ZF also articulates one picture of universality: the iterative
hierarchy. Articulating this picture raises issues (1), (3) and (4).

Although this is a systematic study (i.e. not an historical investigation into
the development of several set theories) sometimes it may be illuminating to
mention and consider side-remarks made by their foundational authors. In
these remarks one can at times discern the broader ontological picture the
author works with.*

4 As this is no detailed historical study, I often omit giving the detailed source of a

side-remark, but refer the interested reader to the comprehensive studies by Ebbinghaus
(2007) on Zermelo, Dauben (1979) on Cantor, as well as (Lavine 1998). Some remarks
have entered the set theoretical folklore and can be found in many introductory books
(e.g. Potter 2004) or (Deiser 2010), which contains many quotes of the founding fathers,
following the development of set theory.
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Universality in ZFC

ZFC has become in its first order axiomatization the accepted set theoretic
standard. We take, as usually done, as Z the system containing the Axioms
of Extensionality, Pairing, Powerset, Sums, Separation and Infinity. ZF adds
Foundation and Replacement, like Separation an axiom schema. ZFC adds
the Axiom of Choice.® ZFC+GCH adds the Generalized Continuum
Hypothesis to ZFC — and so on for stronger axioms.

The antinomies (like Russell’s Paradox®) are often taken as showing that
Naive Comprehension

(NCy) @Ay)(VX)(xey = 9(x))
(NCy) (VE)@y)(Vx)(xey = F(x))

is wrong. The assumption that every concept/property’ has an extension,
which is a set, is considered rejected. The first order axiom schema (NC,) or
the second order axiom (NC;) are sometimes called ‘naive set theory’. They
were by no means present in all approaches to set theory introduced in the
19 century. Cantor’s original set theory was concerned with combinatorial
multiplicities. At times, though, he considered sets as ‘united by a rule’,

> Historically this is misleading as Zermelo included the Axiom of Choice in his

system, where he used it to prove well-ordering (in 1908). He also has an extra axiom for
the empty set, &, but as in FOL the domain cannot be empty, one does not need this
axiom, but gets & by separation. In the 1920s Fraenkel and von Neumann and Skolem
added Replacement. Zermelo’s original system did not contain Foundation, but his
system of 1930 does. His 1930 system ZF’ leaves out the Axiom of Infinity as he then
considered it to be an extra-logical existence assumption. Zermelo’s formulation was not
confined to FOL, but Skolem’s clarification of ‘definite’ property as used in an instance
of Separation led to first order ZFC. Cantor already stated and used both the Axiom of
Choice and Replacement.
6 <Antinomy’ will be used for a contradiction provable given some theory and its logic.
A ‘paradox’ is just a theorem contrary to our expectations and prejudices. Already
Zermelo stressed the importance of this distinction, as otherwise one sees the likes of too
many antinomies where there are only paradoxes. Unfortunately, usage is not so clear
nowadays. By the way: The antinomy unfortunately called ‘Russell’s Paradox’ was
discovered some years earlier by Zermelo. It leads back — as many antinomies — to
negative self-application of a property/predicate, the idea behind the canonical proof of
Cantor’s Theorem, which served as the context of discovering ‘Russell’s Paradox’.
7" In the context of this essay I take “concept” and “property” to be synonymous within
set theories, as is usually done. In (natural language) semantics concepts may be said to
refer to properties, which are often not taken as sets. Set theoretic ontology is less fine
grained. A distinction is made between formulas expressing a concept/property and the
concept/property. CAPITALIZATION is used to signal a concept/property. Reflecting on set
theory and its relation to our cognition concepts (like the concept SET) are taken in their
usual sense as cognitive, and whether they are captured and explicated by a theory (say,
of ‘sets’) is the matter of debate.
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which sounds like Comprehension. Comprehension was certainly present in
the logicist approach to set theory of Frege and Russell.

Now, take a version of Comprehension: the Russell Set, defined as R = {x |
x¢X}, and taking ‘x¢x’ as the open formula ¢(x) or the property F yields the
famous antinomy: ReR A R¢R. The defining property of NOT BEING A SELF-
MEMBER seems to violate the constitutive assumption behind Naive
Comprehension by not having an extension, on pains of inconsistency.

There is another reading of Russell’s Paradox, however. Proceeding to
Zermelo’s Aussonderungsaxiom (Axiom of Separation)® or not-naive
Comprehension scheme (of set theory Z.)

(AS) (VX)@y)(VW)(wey =wex A ¢(x))
the property NOT BEING A SELF-MEMBER can be used to derive:
(NU) —(3x)(Vy)(yex)

the denial of a universal set.” What Russell’s Paradox shows on this reading
is that the assumption of the existence of a universal set is illicit. Cantor’s
Theorem establishes that the powerset ¢ (x) of a set x has a larger cardinality
than x. Cantor’s classical proof refutes the supposition of a bijection f
between x and @(x) by considering the subset {x| x¢f(x)}. If x is the
universal set this naturally introduces the Russell Set (being an element and
a subset of the universal set). The idea of a universal set thus stands in tension
to a core ingredient of the concept SET: that every set has subsets, which
should be collectible. “c” is as central to set theory as “€”: one of them
provides a sufficient foundation:

(Dcl) xCcy€(Vz)(zex D zEy)
(Del) XEy € {x} Cy

8 To be precise: It is a schema in the wff ¢. Any set can be separated by this axiom

schema which corresponds to a wff in the language of the theory. The constructible
universe L (used in Godel’s relative consistency proof for the Axiom of Choice and the
Continuum Hypothesis) consists only of such sets, which requires restricting the powerset
operation to constructible subsets.

®  Proof (Outline). Assume U exists. Take U as the base set x in (AS). The first conjunct
on the right side of the biconditional can then be eliminated, being logically true. One
arrives at the form of (NC;) and the usual reasoning to the Russell Paradox goes through.
Reject the existence assumption concerning U by arriving at the contradiction. B This
proof can already be carried out in a weak subsystem of Z, like Kripke-Platek set theory
KP. Membership can hardly be indeterminate for a set theoretic realist. Even if this had
some plausibility for some sets, with respect to U something is in the universe or is not.
Avoiding the Russell Paradox by banning R from U leaves us with the mystery where to
put R then, or with the option that some collections cannot be sets, which leads to a
set/non-sets distinction. Indeterminate membership plays no role here; theories without
tertium non datur will not be considered here, but giving up fertium non datur may mean
rejecting both ReR and R¢R.
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The Powerset Axiom focussing on “c”, therefore, deserves a special role in
any set theory, as Comprehension and/or Separation focus on “&€”. That
U&U may seem less unnatural than o (U)cU and o (U)€U."

Comprehension is fine as long as we restrict the domain of objects to be
comprehended. If we assume that there is no universal set or domain even
Naive Comprehension need not lead to the antinomies, as one cannot take
for granted that R (or a similar cause of trouble) belongs to the objects (sets)
to be comprehended. (AS) provides the safe formalization of this idea. The
property NOT BEING A SELF-MEMBER can be taken as having an extension now
that (AS) has been adopted. Any property has an extension relative to a base
set. And if a is the base set for an instance of (AS) with ‘x¢x’, the extension
of the subset corresponding to NOT BEING A SELF-MEMBER relative to a is a
itself (as by the Foundation Axiom no set is a member of itself, so that all
members of a satisfy the condition x ¢x).

The discovery behind the set theoretical antinomies then consists not in a
claim about properties

(NNC) Not every property has an extension.
but in a claim about universality
(NU”) There 1s no universal set.

Both claims are ontologically substantial and surprising. Hilbert, for
instance, thought that conception formation was in trouble, as the idea that
being able to determine whether something falls under a concept does not
suffice for the concept’s existence.

The argument against U works with Separation. Using (NC) leads to the
antinomy. One reading of the antinomic argument can also be that it uses the
assumption that the Russell Set R is part of ‘all’ objects (i.e. within the range
of “V”). The range of “V” on pains of contradiction thus cannot be
universal, R lying outside of it. Thus there is no unrestricted quantification
over all collections. If “V” ranges over all sets, R cannot be a set after all.
The collection of non-self-membered sets turns out fo be the range of “V”
in Z because of the Axiom of Foundation (i.e. turns out to be the iterative
hierarchy V itself)! In this reading of the antinomic argument again a set of
all sets 1s excluded. The reasoning poses two problems we come back to
again and again: (1) (NC) still allows building the forbidden collections U

10 Even the problem with Frege’s ‘basic law’ (V) goes back to this, since Frege at the

same time defines extensions as objects (i.e. first order entities) and puts them in basic
law (V) in correspondence to courses of values (predication) of concepts (i.e. second order
entities), by Cantor’s Theorem there have to be more extensions of concepts (namely sets
of objects) than objects (cf. Boolos 1998, pp.135-54). Because of the complete absence
of a Powerset Axiom we do not consider set theories like KP (Kripke/Platek set theory)
in detail.
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and R, and (ii) the reasoning invites our naive bewilderment where some
collection is ‘to be’ when outside of the range of “V ™.

The naturalness of the idea of universality or a universal set may be related
to the Calculus of Classes (cf. e.g. Hilbert/Ackermann 1928, Chap. 2).!!
Textbooks unhesitatingly speak of a ‘universal class’ here. The Calculus of
Classes systematizes our reasoning with respect to ‘classes’ of arbitrary
objects by defining cuts, unions etc. The complement of such a ‘class’ a is
an absolute complement a, such that aua is the ‘universal class’. The crucial
point is that these ‘classes’ of the Calculus of Classes only contain
individuals of the considered domain. There are no ‘classes of classes’. The
‘universal class’ is just the domain considered. The ‘classes’ of the Calculus
of Classes are neither sets nor classes. They obey some axioms (like
Extensionality), but others (like Powerset) do not apply here. The concept
SET exhibits much more complexity than the concept COLLECTION OF
INDIVIDUALS!

Given the logical apparatus of Z we can even derive: U = {x | x = x} = ,
even though we have: (Vx)(x = x)!'?

There are several reasons why there is no universal set in ZF:

1. There is no U because this contradicts Cantor’s Theorem (i.e. because of
the Axiom of Powerset). For U we should have ¢ (U) < U, but this
contradicts Cantor’s Theorem (as, trivially, a subset has at most the
cardinality of the superset). [By the way: Hilbert had a similar argument
working with self-mappings of functions of numbers.]

2. There 1s no U because this contradicts the Axiom of Foundation. For U
we should have U&U against Foundation.

3. There is no U by the Axiom of Separation, as shown above.

4. As, because of further antinomies, there cannot be a set of all cardinal
numbers or of all ordinal numbers — as was already clear to Cantor — there
can be no U, which had to contain these sets as separable subsets.

1" In the following paragraph “class” is scare-quoted to make clear that these collections

are not proper classes, but collections of individuals.
12 Proof (Outline). If one allows for definition by abstraction in a pure set theory (i.e.
without atoms, which are not sets) one has to use a scheme like the following:

xle®)} =y =((Vx)(xey = o(x) A @W)(W=y))V(y =D A 2FW)(VX)(xeW = ¢(x)))

Now, for an instance of this scheme with U = {x | x = x}, assume U # (J, then the second
disjunct on the right hand side is false. Therefore the first disjunct has to be true. This
leads to contradiction again, by the proof for (NU). Thus the assumption has to be
rejected. [In a set theory with atoms the second conjunct in the first disjunct has to be the
meta-linguistic assumption that y is a set, cf. Suppes 1960, p.34.]
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5. There is no U by the Axiom of Pairing in combination with Foundation
as {U} could be built by Pairing (i.e. U and U again gives {U,U}={U}),
but {U} €U contradicts Foundation as {U} does not have an element that
does not share an element with it (as U€U).

The absence of a universal set yields more consequences in Z, ZF and ZFC.
In Z, ZF and ZFC absolute complements are missing: since subsets are
separated relative to a base set the complement to a set x is not the collection
of all things not in x, but only the collection of those things in the base set
which are not in x. This follows the spirit of Separation, but violates,
supposedly, our intuition as to complements. Just as Comprehension is
restricted in Z so is complement building. There cannot be absolute
complements as the absolute complement to & had to be U.

As ZF and ZFC are naturally understood by the iterative hierarchy [cf.
below] their definition of number cannot be Frege’s. Frege used a flat
universe and defined a cardinal number as the equivalence class of sets with
the same equinumerosity — or a representative of that equivalence class.!
Frege defined equinumerosity by means of bijective functions. This cannot
be done in ZF as, for instance, there are singletons of any rank in the
hierarchy, so the supposed set representing 1 had to contain elements from
any rank, but this is impossible for a set (contradicting the Reflection
Principle): Sets have a minimal rank, the rank at which all their elements are
present. A collection of sets of arbitrary high rank cannot be a set, and this
cannot be or represent a number.

The idea that there is no universal set seems to go against our logical
intuitions as we have developed them working with quantificational logics:
There is always a domain of all objects to be quantified over.

3 In fact, in Frege’s consistent system behind the Grundlagen der Arithmetik the

concept BEING-IDENTICAL-TO-ONESELF should have an extension, and thus a number: the
number of a/l things! The system can, however, not tell us what number this is (cf. Boolos
1987).
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The Universe V (of Z, ZF, ZFC)

What then can be the semantics of Z? How are its quantifiers to be
understood? Although there is no universal set, there is wuniversal
quantification in Z. The axioms witness this. The Axiom of Separation, for
instance, says of all sets that for any condition the corresponding subset
exists. In terms of the iterative hierarchy [cf. below] the axiom talks about
sets of any rank.

One issue should be made clear at the very beginning: The metaphors usually
employed when setting out ‘the construction’ of some sets, say of the
transfinite ordinals, should not be taken literally as involving some temporal
procession of arriving at ever larger ordinals, ranks or cardinalities. As sets
are abstract entities they do not depend in their existence on any one — not
even God — counting up to them. Sets are simple there. All of them are there.
The metaphors of construction merely serve to express the structures the sets
employ, and may serve, sometimes, as didactic devices how we come to
understand some set on the basis of another collection of sets. Thus, that
there is no highest rank in ZFC should not be misunderstood as the set
theoretic hierarchy V being under construction. All sets are there, thus V is
there. For this ontological thesis and corresponding universal quantification
it is irrelevant whether we have epistemic means to distinguish that totality
from any incredibly large, but not total collection/set.

Like FOL, which does not count its domain to be one of the objects to be
quantified over, Z itself need not talk about its domain. A stronger meta-
language may be used to model the semantics of Z, typically a second order
logic (SOL) talking about proper classes, one of which may be the domain
of Z. We come back to this later.!* But suppose there to be such a model for
Z.. What should the domain of it be called? It certainly looks like a universal
set, as it comprises all sets. Then Z cannot be complete, since it does not deal
with all collections of objects/sets. But wasn’t it supposed to be complete in
its application? V has to be a collection of sets, and can be no set itself in Z.
Zermelo (cf. 1908) recognized this and concluded from the reasoning about
the Russell Set that the domain of set theory ‘is not itself a set’. There seem
to be totalities beyond sets then.

14 T use “set” to talk about sets and “class” to talk about proper classes (so called

because these classes either are not sets or have no corresponding set, both usages are
common, we come back to the idea of ‘correspondence’ below). “Set” and “class” are
thus not taken as synonymous here. All claims and theories referred to are adapted to this
usage; formalisms/symbols are also rendered into the common format used here.
Following ordinary usage equivalence sets are called “equivalence classes” although they
are no classes.
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The standard picture of the realm of sets accompanying ZF and ZFC is, at
least nowadays, the iterative or cumulative hierarchy. It can be argued that
Cantor had already a conception of sets congenial to this picture, because
Cantor thought of sets as build by the iterative application of set building
functions. Frege’s set theoretic universe, in contrast, has to be conceived as
flat (non hierarchic). The hierarchy was clearly developed by von Neumann
(1929), wherefore it is sometimes called “von Neumann hierarchy”. Zermelo
developed a similar picture in the late 1920s. The Axiom of Foundation and
the Axiom of Replacement determine this picture. Foundation expresses the
idea that a set occurs at some earliest level in the hierarchy (as sets are
build/defined by iteration of set building operations there is some — though
possibly transfinite — number of preceding set building operations). As
mentioned before, talk of ‘building’ sets should not be taken as a process of
construction, but only as an easy way to express structural dependencies
between sets all being already there. The Axiom of Replacement expresses
the continuation of ever higher levels (e.g. by collection a transfinite
sequence of iterations of applying the powerset operator into a single set).

In the pure version of the hierarchy the starting level (or ‘rank’) V is &, then
there are two ways of proceeding to higher ranks

Vaii = 9 (Va) for successor ordinals o
Vs=U{Vu| a <0} for limit ordinals 6

the set theoretic universe V can then be seen as a hierarchy where later sets
depend on preceding sets (although, of course, not in a temporal manner).
The hierarchy is iterative as the two hierarchy building operations are applied
over and over again. The hierarchy is cumulative as the sets present at V, are
also present at all levels Vs with a. < 8.1 Each set has some earliest rank of
occurrence. All ranks are transitive sets (i.e. contain all members of members
of members...). The strength of the operation of collecting the powerset
provides the plenty of the next stage. Reflections about how strong the idea
of a powerset is concern directly the issue of the Generalized Continuum
Hypothesis (GCH).

The picture is slightly different in a set theory with urelements. The set of
urelements M lays at the foundation of the hierarchy V, = M. The two ways
of proceeding are accompanied by the requirement that for each Vo, M V.
A corresponding set theory needs to distinguish sets from non-sets and is
called ZFU or ZFCU.!'¢

15" Remember that @ < Vg for any Vg as Vg is a set. Thus at Vo & and {} are

present and thus each stage contains all preceding stages.

16 Usually the system is called ZFU, with U being the set of urelements. The name

“ZFU” may thus confuse in the context of our investigation into the existence of the

universal set U. Nonetheless we stick with the usual name “ZFU” as urelements and thus
13



Thus, one can picture V as either a pure hierarchy of ZF, ZFC (upper part
in the picture) or a hierarchy based in domain of non-sets (lower part).

l’fml 1 -'.I
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1"J'l I ll'-\_

ZFU has a broader base than ZF. The dots before V., indicate that V,, is the
first limit level (of transfinitely many).

Z takes us with the Axiom of Infinity to V., but not to arbitrary high ranks
in V. We need ZF (i.e. Replacement) to go further. By Replacement we
know that the function in n for n€® which takes as value the n-time powerset
of ® has as range a set, since o is a set (by the Axiom of Infinity). Therefore
(by the Axiom of Union) the union of all these powersets exists as a set, and

ZFU and ZFCU play no vital role in this book. For us it is important to distinguish the
set of all sets U from the class of all sets V, so we need the name “U” in addition to “V”.
14



thus as a next rank in V. Now we can move in ZF beyond V... Note also
that in this rank all other ZF-axioms are satisfied, while — by Foundation —
the rank is not a member of itself, which establishes the independence of
Replacement from the other ZF-axioms.!”

Up to Ve we find in pure set theory the hereditarily finite sets. They fit
naturally to defining the ordinals in von Neumann’s way: n+1 £n U {n} and
take @ as 0. Then in V,, a transitive set of transitive sets is a number. We get:
NEVan, NV, Vi€ Vo, Vac V. Ranks and numbers thus are €-ordered.
The hereditarily finite sets fulfil the axioms of ZFC save the Axiom of
Infinity, although the Axiom of Choice and the Axiom of Replacement
become unimportant here: The Axiom of Infinity is thus independent from
the other ZFC-axioms. The finite system is sometimes called: ZFC. In fact
one could add an Axiom of Finiteness here:

—(3x)(D=x A (Vy)yEX D yUly} €X))

Obviously, the Axiom of Finiteness is true up to Vo, i.e. for all hereditarily
finite sets. And equally obviously V. (i.e. the domain of that theory) is not
finite. We meet the same situation as with Quine’s basic finite arithmetic [in
chapter III]. Even ZFC~ can do what Peano Arithmetic, PA, does: prove
theorems concerning representability and provability (e.g. Tarski’s and
Godel’s theorems.!® Note that the hereditarily finite sets provide an intended
model for ZFC (i.e. in contrast to other unintended countable models for
ZFC). Note also — and this may be thought to be important — that Naive
Comprehension causes no trouble within the hereditarily finite sets. The
Russell Set, for instance, does not exist up to Vo, as it contains all hereditarily
finite sets, since they satisfy Foundation, and thus is infinite. If the set of
urelements is finite as well — as one may expect in a finite physical universe
— this finite consistency of Naive Comprehension may be the background of

17" Remember not to confuse the indices of ranks above Ve with theses about the

cardinality of the rank itself, the order type of its largest member or the index number
occurring for the first time at that rank. o+1 (i.e. {2,3,4,...1}), ®+2, ©+3 etc. are, because
they are order types (i.e. relational) subsets of @wxm, thus countable, thus sets of ordered
pairs (i.e. given the usual definition of ordered pairs, sets of sets of sets of natural
numbers) being subsets of Vo2, members of Ve+3. These ranks have cardinality N2, N3
respectively and contain many, many ordinals. The set of real numbers, under the usual
construction (as a set of sets of sets of natural numbers), is a subset of Vu+2, member of
Vo+3, and is uncountable, whether it has a order-type (not just a simple ordering, but a
well-ordering) is not obvious and is ensured only by ZFC, not ZF.

18 Cf. Fitting 2007. The Peano/Dedekind-Axioms for the successor function and
induction follow easily in Z from the Axiom of Infinity. Taking natural numbers as von
Neumann ordinals makes obvious that 0 is no successor and that the successor relation is
functional. Induction follows since an inductive property is inherited by the successor
relation, thus contains ®.
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our intuitive support of Naive Comprehension. Let us note this as a theorem
(“y” not occurring in ¢ as always):

(ENC) [{xle(x)} < Ro O (FYN(VX)(xEy = 9(x))

Let us leave ZFC~ behind and look at all ranks in V. With a little pretense
we can say: In the iterative hierarchy exists at some rank any proper subset
of V, i.e. (a) pretending for the moment that the non-set V has subsets and
(b) speaking only about collections that can be sets (excluding a set of
ordinals etc.). We can approximate Naive Comprehension up to an arbitrary
rank: y = {x | ¢(x)} exists for any ¢ as long as the rank of y < a for some
ordinal a.. The set y exists then somewhere below o.. We can say in general:
If a set x exists x has some rank.'® Existential statements are, if true, true in
parts of V. The Principle of Reflection correspondingly claims that if a
general sentence or a finite collection of sentences in the language of ZFC
1s set theoretically true, there is a least rank V. which can serve as its model
(with variables in the sentences bounded to rank V.).?° One might expect
that as all specific sets mentioned in a sentence have a rank. Limit ranks
ensure this structure. Once again — as with Naive Comprehension — we seem
to approximate talk of all sets! The Reflection Principle is equivalent to the
Axiom of Replacement.?! So the fully developed picture of the iterative
hierarchy established by Replacement approximates universal set theoretic
talk. Unfortunately, this would be too good to be true.

On the one hand we approximate universal set theoretic talk. And not just —
one may claim (as Kreisel 1967 did) — set theoretic talk: Set theory can be
considered to be our strongest formal system, the system to be used in the
meta-theory of all other systems. Then: If some claim in some informal

9 Proof (Outline). If x existed without a minimal rank at which it exists, x would

contain all ordinals as a subset, which is impossible.
20 This does, of course, not hold for an infinite collection of sentences as all infinitely
many instances of the schema of Replacement enforce V. The Principle of Reflection is
another reason why ZFC cannot be finitely axiomatized: If ZFC could be finitely
axiomatized, then it would establish — by the Principle of Reflection — a model of itself,
thereby establishing its own consistency, contradicting Gddel’s Second Incompleteness
Theorem.
2 Proof (Outline). The Reflection Principle entails Replacement, since if the antecedent
of Replacement is true, there has to be a rank Vo modelling it; the set postulated as
existing in the consequent of Replacement will be a subset of that modelling rank Vo.
Replacement entails each instance of the Reflection Principle in going through the
quantifiers of the finitely long compound (Vx)¢(x) taking the lowest possible rank of
satisfying instances (which have to be there to make ¢(x) true) and uniting them and their
dependencies (by a Replacement function) into a highest most comprehensive rank,
which thus models (Vx)p(x). B Omitting the Replacement schema and restricting
separation to formula ¢ with quantifiers bounded to some set provides a further weakened
theory Z (also known as ‘MacLane Set Theory’), which nonetheless proves sufficient for
most of mathematics.
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system is intuitively valid and can be captured in some formal system it has
a set theoretical model. Kreisel’s Thesis so states: Whatever is valid is valid
in a set theoretical model, and if — as we may suppose — finitely many
sentences were used in that piece of reasoning, it is valid at some rank V.

On the other hand, however, we, obviously, shift the domain of reference
from V to some rank V.. So, a universal statement (say, the Axiom of
Pairing) does no longer talk of all sets, but only of those up to V.. Seen in
this light the Principle of Reflection resembles the Lowenheim/Skolem-
Theorem in allowing for non-standard or unintended models of universally
quantified set theoretic sentences. As V. can be arbitrary high one may see
this as less concerning than the countable models ensured by the
Lowenheim/Skolem-Theorem. If V. is a sufficiently high transfinite rank we
approximate universal talk. We can also understand the possible shift of
domain of reference as underlining the insight that universal set theoretic talk
is bound to strong axioms like Replacement.

The universe V is not reached by any ladder (‘construction principle’) used
within it. It is as strongly inaccessible by such steps as it can be. Otherwise,
we only have a temporary halting point V.. V is no number, is no set, no
union or power of sets. V can only be thought as sui generis. How do we
know this? Because otherwise it could be superseded in one of the usual
ways. We thus have a transcendental argument concerning V’s nature: it
cannot be otherwise, since otherwise it wouldn’t be.

Without the Axiom of Foundation or endorsing an Anti-Foundation Axiom
the realm of sets is larger containing with the unfounded sets more collection
like entities. Where are these collections collected in? U seems a good
candidate for a collection of unfounded collections as U&€U itself. But
unfortunately, Z forbids U. Are unfounded collections sets? Or does our
concept SET entail that sets are grounded collections? In this case we had the
problem that on the one hand we had to endorse the Axiom of Foundation,
but this excludes U from our set theory. If sets are abstract entities nothing
seems to exclude that they contain themselves as all spatial images are
inappropriate. Picturing non-well-founded sets by graphs (cf. Aczel 1988)
shows easily membership bending back to its origin. Anti-foundationalist set
theories contradict our concept of set, however, if set identity becomes more
than identity of membership (cf. Aczel 1988, chap.4). The iterative hierarchy
motivates our picture of sets as well-founded by stressing the idea of
ontological structural dependence between a set and its members. In this light
a set containing only itself, x ={x}, seems unnatural. U, in contrast, contains
besides all other things itself. We might recognize U as a set sui generis and
allow for U what we do not allow for other sets. Foundation would make an
exception for U. But the exceptions would not end here as U, being subject
to the others axioms if still a set, is exceptional — even inconsistent — with
respect to Cantor’s Theorem, for instance. Foundation certainly is built in
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the iterative hierarchy and V does not pose the problems with respect to
Foundation that U does. According to the story of the iterative hierarchy,
unfounded sets do not exist. The Axiom of Foundation follows from the set
up of the cumulative hierarchy. The two conditions to proceed to higher
ranks ensure the axioms of Pairing, Sums, Powerset and Infinity. Coupled
with the idea of sets being extensional the structural properties of the iterative
hierarchy thus entail the ZF axioms (cf. also Boolos 1989).

There are — besides the question of an Anti-Foundation Axiom -
incompatible set theoretic axioms (like the Axiom of Choice vs. the Axiom
of Determinacy??), which shows that there are related realms of set-like
entities (sharing the basic axioms), but which cannot be consistently united.
There might be a unified inconsistent realm of all these sets [cf. Chap. V].
Even the incompatibility need not show that our concept of set is not settled.
One of the set theories may be thought to be more natural. Even a concept
SET settled in its basic aspects (like set separation and powerset existence)
may leave some questions unsettled. The (Generalized) Continuum
Hypothesis is the best-known example. The simple Continuum Hypothesis
[—(Tx)(No < |x| < 2%°)] is even independent of the Axiom of Choice.?’

V has sets of arbitrary high rank. V itself does not occur in the hierarchy
itself. V taken as the proper class of all ranks in V is a model of ZF. If V
exists ZF is consistent, as V satisfies all its axioms. Large cardinals (strongly
inaccessible cardinals beyond the reach of any set building operation by

22 Cf. Jech 2003, pp.627-43. The Axiom of Determinacy in so-called ‘Descriptive Set
Theory’ contradicts the Axiom of Choice, what one may take to be bad enough. It also
entails some strange results for large cardinalities (like X1, N2 being measurable
cardinals, but X3 ... not being measurable). ZFC seems closer to our conception of sets
in this regard.
23 Proof (Outline). Alephs are defined as infinite well-orderable cardinals. The Axiom
of Choice is equivalent to the statement that any infinite cardinal is an aleph (as it implies
the Well-Order Principle). Negating the Axiom of Choice (and thus the Well-Order
Principle) one may endorse the simple Continuum Hypothesis buf maintain 2%° = N,
since one may now deny that the Continuum can be well-ordered, whereas the
combination with the Axiom of Choice entails 28° = X, since the Axiom of Choice
entails that any infinite initial ordinal is an aleph. B
Cantor proved in 1883 that there is no cardinality between the cardinality of the collection
of finite ordinals (¥X¢) and the cardinality of the collection of all countable well-orderings
of o, that cardinality thus being the next well-orderable cardinality: Ni. Given the
Continuum Hypothesis 28° is the cardinality of all countable /inear orderings of ®. Given
the Well-Order Principle thus N;=2%°,
The Generalized Continuum Hypothesis (GCH) entails the Axiom of Choice: Using the
first aleph GCH claims for all infinite cardinals x = 2Y™°, x = 2Y"X° entails x being an
aleph, which makes y an aleph. The GCH thus excludes that there are cardinals in between
well-orderable cardinals (i.e. in between well-orderable sets), so that via its respective
cardinal number any set can be well-ordered. B (On arguments and intuitions around CH
and GCH cf. Potter 2004, pp.266-82; Maddy 1988, §2.)
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being uncountable, regular and greater than 2° for any preceding cardinal §),
if existing, are such models as well. For V the axioms of ZF are construction
principles and thus trivially satisfied. For (strongly) inaccessible cardinals
the important observation is that they are assumed to be just larger transitive
sets. Take the least such cardinal; any function within it is of lower rank as
the cardinal itself; thus, the range of the function is a set, which has this least
inaccessible cardinal satisfy the Axiom of Replacement — the other axioms
are obviously satisfied again (cf. Jech 2003, pp.165-67).

Having all subsets of a rank present at the next rank suits the Axiom of
Choice: If a family of non-empty sets x exists at some rank V., the members
y of that family exist already at lower ranks Vs with 8<a, and their members
z exist already at lower ranks V,with y<d (relative to a 8 for some y); thus as
these z are elements of some V, a set w containing one of them for each yex
exists (at the latest) at the rank V. of x. Choice is natural in the iterative
hierarchy. V rather corresponds to ZFC.

Once we have one of the inaccessible cardinals or the class V of all sets we
have a model of ZF and could be content with respect to our theory of sets.
So, should we care about their nature?

Leaving V to the side for a moment let us consider large cardinals. We have
just talked about them, so we know something about their nature and we can
ascribe properties to them. So, they should be the objects of some theory.

Zermelo thought of strongly inaccessible cardinals (his ‘Grenzzahlen’)
forming themselves an unbounded sequence. This, however, implies that we
quantify over them, and are again in the situation of asking over what domain
now our quantifiers run. Is this collection of Grenzzahlen itself some
Grenzzahl? Supposedly not to avoid antinomies of the Burali-Forti-type.
Then again if we now introduce Super-Grenzzahlen we can start all over
again with them — and once more the whole process iterates. Zermelo
thought: ‘This series reaches no true completion in its unrestricted advance,
but possesses only relative stopping-points, ...” (1930, p. 47).

Now, this way of thinking may be innocent for a constructivist, but for a set
theoretic realist the idea that sets have to come into existence is simply
wrong. Placing them at some rank in the hierarchy does not mean that they
come later (in time?) than the other sets. Frege’s universe is anti-
foundational. And for a Platonist an anti-foundationalist universe has the
advantage of keeping all ideas of stepwise construction at bay. As all abstract
objects are there they exhibit some ontological dependencies, but this does
not require that some are before or beneath others. Impredicativity is no
problem in such an anti-foundational universe. Zermelo himself rejects any
spatiotemporal associations. A well-ordering ‘has nothing at all to do with
spatiotemporal arrangement’. He also thought the term “choice” to be
problematic as one may associate (temporally) successive choices being
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performed, where we have only a representational/selectional correlation (cf.
Ebbinghaus 2007, p.69, 135). The ranks express a structural dependency
only. All ranks are there. In the same way all of that coming beyond the set
theoretic ranks (i.e. any large cardinal) is there. Thus, there should be a
collection of it all. Assuming a sequence of large cardinals thus does not
seem to solve the problem of collecting sets, but either adds the issue of an
incomplete universe or means that V contains them all and only our set
theory, say ZFC, is not complete yet and has to be strengthened by further
axioms.

The issue of large cardinals is independent from that of the universe of sets.
If one can argue that some idea of some type or large cardinals comes from
our concept of sets — say, why should &, be the last inaccessible? — then
these large cardinals may be thought of as stages in V above those which
ZFC (so far) treats of. Any type of closure operation on preceding collections
should correspond to a set within V. This idea resembles the content of the
Reflection Principle: Any finitely specified closure condition can be
modelled by some rank. Large cardinals may provide a universe and a model
for ZFC, but they differ from classes in being collectable themselves and
thus being members of the overall universe of (extended) set theory. Another
argument for such additional sets stems from Scott’s proof that VL given
large cardinals, as the notions of (unrestricted) powerset and uncountability
stand in conflict to V=L. The constructible universe seems unnatural, even
though V=L entails the Axiom of Choice and the Generalized Continuum
Hypothesis, excluding it speaks in favour of large cardinals. The
constructible universe violates the idea of purely extensional sets inasmuch
as pure extensionality should allow for sets beyond any descriptive powers.
One might think that it follows the idea of Naive Comprehension, that sets
correspond to properties, but why should all objective properties correspond
to formulas in the first place? Proceeding to the next rank by the full powerset
operation suits the simple idea of the powerset. Curtailing the powerset to
subsets which are definable leaves out sets that should be there.

V is the ultimate model of the universe also in the sense that constructions
like ‘forcing’ or means of building ‘inner models’ start from V (cf. Arrigoni
2007; on the formal details cf. Jech 2003, pp.175-223).%

The iterative hierarchy does not know several classes. It might be preferable
not to call V a class, but to treat of V as a very special object in its own right
— an issue of axiomatic ontology. If we call V a class it is not to be thought
of in the manner of NBG or MK, since there is no part of set theory which

24 Leaving here to the side the problem that such models are non-standard or

unintended, e.g. in being countable; cf. the remarks in the next chapter on limits of
expressivity. One may add that inner models like L, which restrict the powerset operation,
but satisfy the others axioms in their standard reading (relative to the shrunken universe),
are less non-standard than models generated by forcing.
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addresses it, like Comprehension and Limitation of Size address classes in
NBG or MK. V is not in the range of set theoretical quantifiers. It is not in
the domain. Calling V ‘a class’ in the context of the iterative hierarchy and
ZFC means there exists only one class (outside of our theory of sets).?

V is the range of the quantifiers in ZFC. Cantor claimed that every potential
infinite presupposes an actual infinite ‘and cannot be thought without it (cf.
Cantor 1887). This is the Domain Principle: Speaking of and quantifying the
x presupposes the domain of the x.2

V is a very special entity, both within the picture of the iterative hierarchy as
in our meta-theory modelling our theory of sets. V has no subsets as V is no
set. V is not well-ordered — even in the presence of the Well-Order Principle
only sets are well-ordered. V is not the domain of a (replacement) function,
sets are — and so on. V contains all ordinals and all cardinals, but there is
neither a set of all ordinals nor a set of all cardinals. They cannot be
established as subsets of V, since V is no set (and thus Separation does not

apply to it).
For V to be more than a stopping point to be superseded V has to be an entity
sui generis. This means informally that V is exactly what the picture of the

iterative hierarchy shows it to be. V is determined, not indefinite, and unique.
Formally this means

e that V cannot be an element of whatsoever other collection — on pains
of re-introducing distinctions of the set/class-type

e that there are no other entities of V’s type (not a collection of proper
classes)

e that V is an entity which can be talked about by its name, without
including it into a domain of reference.

V is not a standard object of (set theoretic) model theory. The only thing V
‘does’ is containing all the sets. A universally quantified sentence of pure set
theory is meaningful as there is an entity which provides all the variable
values: V.

A unified language has to distinguish urelements, sets and V. Again: V
cannot be unified with them in a domain. The name “V” refers to V rigidly.
End of story.

25 At some time, Cantor considered distinguishing several ‘absolutely’ large,

‘inconsistent’ collections (like those of all ordinals or all cardinals). But they play no role
in a transfinite set theory based on standard logic. Even apart from producing antinomies,
these collections play no indispensable role in proofs about sets. So, Cantor came to
consider the single absolute, inconsistent totality beyond any further increase.

26 Cf. Moore 1990, pp. 114-22; Tiles 1989, pp. 95-107. The principle sometimes —
ignoring Cantor? — is discussed as ‘All-in-one Principle’, going back to (Cartwright
1994).
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Given the difficulties in understanding an incomplete universe and the
fundamental role of a Domain Principle, why don’t we just talk about V
without assuming it to be the value of a bound variable? This appears
reasonable as doing otherwise land us in an incomprehensible framework of
indefinite existents.

Assume we do not give up on the infinite, whether we are Platonists or
fictionalists or whatever else. There are then infinite collections. Comprising
within them all of a kind not collectable item wise by finite beings. We
collect them using our concept COLLECTING. If we talk about the F's we
naturally assume that there is a collection F' where they are in. Cantor’s
Domain Principle expresses this idea that the F's we quantify over or talk
about can be collected into a totality. Sometimes the totality has to be of
another type to avoid antinomies (e.g. in the set/class-distinction). As there
seems to be no limit to this procedure we always progress to a wider
domain.?” The Domain Principle thus enforces the idea of the incomplete
universe. A domain is added to the objects, giving a larger domain, which is
added to the objects — and so on.

Unless, that 1s, we meet a fixed point in this progression. Informally, the
totality of things to be thought of or to be talked of can be thought or talked
of: it belongs to the very domain it defines. Thinking of ‘the domain x is in’
applied to it leaves us at it. Thus, it may be called a fixed point of the Domain
Principle.

As intuitive as the Domain Principle may occur to us, leading us up the
ladder of the indefinite may be too much, as we have seen above. We might
accept that the whole construction has a limit: a collection beyond further
collecting. There lays the naturalness of Limitations of Size: There is one
size too big to be collected into a set. This collection better not be the set U
to avoid severe complications in set theory, otherwise rather intuitive. So one
may see the idea behind Limitations of Size without endorsing NBG or MK,
or any other set/class-theory. Nothing is gained by having (several) classes.
With a collection of classes the question of their collectability immediately
arises.

The single limit object V might be different.

If that limit object V exists — neither a set, nor an extended set like an
inaccessible cardinal, nor a class — ZFC is consistent. And if our intuitive
notion of set rather endorses the General Continuum Hypothesis, we add it

27 Recently Rayo and Williamson (2003) and others have argued for ‘unrestricted First-

Order languages’, i.e. for quantification without a domain. The formal proposal, however,
must employ SOL and a richer meta-language for which similar problems arise. One may
also consider the employed SOL as critical and problematic (cf. Weir 2006). Unrestricted
quantification is only unrestricted beyond an object/meta-language distinction.
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as well: ZFGCH is consistent, if V exists. Our notion of set suits V, and vice
versa.

This conception of V as collecting all the sets but being a special limit object
may correspond better to our concept SET than taking set theory just as the
realm up to the first strongly inaccessible cardinal. [The Cantor quote setting
the theme may illustrate this perspective.] Someone might argue that our
concept SET takes us thus far, but that there are other mathematical objects
and theories (especially those of large cardinals, measures etc.), which pick
up the baton where ZFC hands it over. Although this sounds like a nice
division of labour, the large cardinals are too set-like to provide a natural
boundary to our concept SET, supposing it to fit to ZFC in the first place. V
is a stop point, the first inaccessible cardinal is not. And large cardinals —
again — give rise to the question where their hierarchy is collected in, inviting
and requiring V or some V’, landing us again in an incomplete universe. V
1s not an incomplete universe at all: although we cannot walk, count or
‘powerset’ us up to it, V contains all sets; they are not in the making, there
are no processes of indefinite extension going on. In this respect V as an
object at the limits of thoughts differs from the row of experiences discussed
by Kant in the Critique of Pure Reason: Kant traces the antinomies to their
common error of taking the series of experiences, which is only given
piecemeal and prospectively (‘aufgegeben’) as a ‘given’ totality. As
experiences are obviously under temporal construction their series can never
be united — by whom? In an experience? Sets, in contrast, are not
(temporally) constructed and thus should be collectible in a unity. Thus far
we are carried by the Domain Principle. At that /imit we ‘simply’ have V as
an object, and stop adding it to a domain.

Our concept of SET may force stronger set theoretic axioms on us. This
shows, however, not the incompleteness or growing extension of V, but the
incompleteness of a theory like ZFC. Urelements and & have no members,
but are members; sets have and are members; V has members, but is not a
member: it occupies a slot in conceptual space.”®

We may say: our idea of V is an idea contained and connected to our concept
SET. The special nature of V is forced upon us by the unfeasibility of the idea
of an incomplete or thought independent but growing set theoretic universe.
We know of V by the picture we have of the iterative hierarchy and the
structural relations between the ranks.

This conception of V follows some intermediate path between the two
ontological traditions in analytic philosophy. On the one hand there are
reasons of conceptual analysis why V suits our concept SET. On the other
hand, some peculiar postulates need to be laid down for V. “V” is a rigid

8 The slot of neither having members nor being a member finds no existing filler, if

there is not David Lewis’ atomless, uncollectible ‘gunk’.
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designator naming an entity which does not belong to some domain of
quantification, although all other entities and referents of names do!

The major difficulty here would be to allow for a level or form of meta-
theory when talking about V which is outside of any formal system. That
way may lay ineffability or some version of ontological semantic mystery!

Comparing noneism, the incomplete universe and the thesis of V being an
entity sui generis, the third idea comes out best in its combination of
conceptual analysis and axiomatic ontology. If an inconsistent or noneist
ontology is too much to swallow when taking on such a paraconsistent
system, then we have to opt for at least partial fictionalism with respect to
(some) entities proposed within paraconsistent set theories. Then the
exploration of universality in set theory naturally awaits a further thorough
exploration of fictionalism. Too many difficult questions wait there: Fictions
like fictional characters in literature depend historically and genetically on
their authors, and maybe on still existent copies of the literary work and
living readers (cf. Thomasson 1999), nothing of this sort can be said of pure
sets. Pure sets (like in ZFC) are not just presented as abstract entities outside
of space and time, but their presentation (the story told by ZFC) arguably
does not depend on any particular set theorist — not even Cantor, Frege or
Zermelo. There might be several intermediate ontological categories
between such purely abstract entities and spatio-temporal entities (cf.
Thomasson 1999, pp. 120-33). Even in ZFCU one may wonder about the
singletons of contingent urelements like the Cologne Cathedral: It seems
bizarre to assume it to exist before the building was finished or even planned,
thus this set seems to have a historical place! The recent interest in
fictionalism may lead to increased ontological options.
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