Das Unendlichkeitsaxiom und das Prinzip der Domäne

Der Aufstieg in *Cantors Paradies* ergibt sich, sobald *einmal eine* aktuale Unendlichkeit angenommen wird. Hier bedarf es daher einer Einstiegsreflexion. Dies betrifft zwei Aspekte: das ontologisch-axiomatische Vorgehen und das Verständnis der Allquantifikation.

§1 Das Unendlichkeitsaxiom

In Z hat das Unendlichkeitsaxiom die Form

(U)
$$\exists x (\emptyset \in x \land \forall y (y \in x \supset y \cup \{y\} \in x))$$

bzw. als Mengenabstraktion

(u)
$$u = \{x \mid x = \emptyset \lor \exists y (y \in u \land x = y \cup \{y\})\}\$$

Welche – harmlos – imprädikativ ist.¹

Die Existenz von ∅ wird zugleich mit der Existenz einer unendlichen Menge postuliert.

(U) ist das einzige nicht relative Existenzaxiom in ZFC.

Das Axiom ist imprädikativ, insofern die Menge, um die es geht, durch Bezug auf eine Allgemeinheit definiert wird, zu der es selbst gehört. ZFC ist in dieser Hinsicht wesentlich imprädikativ. Diese Imprädikativität widerspricht einem konstruktivistischen Bild, in dem die Konstrukte nach einander auftreten und ein neues jeweils eine von ihm getrennte Stufe der Konstruktion voraussetzt. Es ist in ZFC nicht – wie in der Typentheorie – verboten, dass eine Menge über sich selbst redet. Gemäß dem realistischen Bild der iterativen Hierarchie finden sich in imprädikativen Mengendefinitionen einfach entsprechende strukturelle Beziehungen wieder. Imprädikativität alle bedingt keine Antinomien. Die üblichen Antinomien werden in ZFC nicht durch Prädikativität, sondern durch die Beschränktheit des Aussonderungsaxioms und den Charakter des Universums – was einer "Limitation of Size" entspricht – verhindert. Ohne Imprädikativität ließe sich Unendlichkeit durch entsprechende Axiome wie in PA garantieren: 0 ist kein Nachfolger; jede Zahl hat einen Nachfolger; die Nachfolgerelation ist eine Funktion. Eine unendliche Menge mag dann 0 und die Nachfolger von 0 enthalten. So lässt sich – natürlich – nicht die Arithmetik auf die Mengenlehre reduzieren.

(U) bedingt mindestens eine Menge, welche die von Neumann Ordinalzahlen enthält

$$0 = \emptyset$$

$$1 = \{\emptyset\}$$

$$2 = \{\emptyset, \{\emptyset\}\}$$
usw.

d.h. jede Ordinalzahl ist die Menge ihrer Vorgänger. (U) schließt nicht aus, dass es noch andere Elemente in einer betreffenden Menge gibt.

$$\mathbb{N} = \bigcap \{x | \varnothing \in x \land \forall y (y \in x \supset y \cup \{y\} \in x)\}$$

Derart postuliert (U) eine aktuale Unendlichkeit.

§2 Axiomatische Ontologie?

Als Axiom soll (U) wahr sein. Zugleich ist (U) als Existenzbehauptung offensichtlich synthetisch – im Unterschied zu den konditionalen Existenzaxiomen in ZFC. (U) ist somit synthetisch a priori! Also hat (U) einen Charakter – am Fundament der Mathematik – dem gemäß dem Logischen Empirismus eigentlich nichts entsprechen sollte. Insbesondere wird der Logizismus (die erhellende Reduktion der Mathematik auf die Mengenlehre als mutmaßlich "reiner Logik") zu einem Problem.

Was soll es heißten, dass (U) als Axiom postuliert wird? (U) ist wahr in Z (in der Sprache von Z). Sprachrelative Wahrheitsprädikate – wie in der analytischen formalen Semantik – werden also von (U) sagen "wahr in Z". Doch damit ist sehr wenig gesagt. "Es gibt Vampire" wäre entsprechend wahr gemäß der Theorie "Dracula" von Brahm Stoker.

Wir haben gegenüber solchen relativen Wahrheitsbegriffen auch einen absoluten: wahr in allen guten Theorien (d.h. solchen, welche der Wirklichkeit entsprechen).

Wie sieht es diesbezüglich mit (U) aus? – Dies ist eine Variante des Problems, das Quine unter dem Titel ,truth by convention' verhandelt.

Konventionen konstituieren eine Sprache (noch ganz im Sinne Carnaps) und sie konstituieren zugleich (im Sinne Carnaps) die analytischen Wahrheiten *dieser* Sprache.

Doch sind die analytischen Wahrheiten einer Sprache auch (absolut) wahr?

Es gibt Grenzen des Konventionalismus. Selbst wenn Konventionen nicht direkt falsch sein können (zumindest in der Sprache, die sie konstituieren), so können sie *unangemessen* sein – d.h. die Sprache, welche durch die konstituiert wird, mag eine Sprache sein, die wir *nicht sprechen (wollen) sollten*.

(*) Katzen sind ferngesteuerte Roboter.

kann Teil einer – devianten – Sprache sein. Die Redefinition von "Katze" – und evtl. von "Roboter" – macht sie jedoch nicht in einem interessanten Sinne *wahr*. Der 'interessante' Sinn von 'wahr' und 'korrekt' bezüglich einer Definition ist, dass sie zu einer Sprache gehört, die wir sprechen *sollten*, *weil* sie die beste uns zur Verfügung stehende Sprache ist, um erfolgreich die Wirklichkeit zu beschreiben, erklären und evtl. in sie handelnd eingreifen zu können.

Ist Z also Teil dieses – zu einer Zeit immer fallibel bestimmten – besten Systems? Dieses verweist auf Argumente zur Wahrheit der Mathematik und insbesondere zur Unverzichtbarkeit der Annahme aktualer Unendlichkeit, also die Frage, ob alle Axiome als Aussagen in unsere bestmögliche Theorie eingehen müssen.

§3 Das Prinzip der Domäne

Eine entscheidende Motivation zur Annahme des Unendlichkeitsaxioms ist das *Prinzip der Domäne* Cantors. Es besagt ungefähr

(D) Die Domäne der Quantifikation muss als gegeben angenommen werden.

Dies heißt auch, wie Cantor sagt, "Jede potentielle Unendlichkeit setzt eine aktuale Unendlichkeit voraus".

In semantischer Hinsicht scheint (D) kaum bezweifelbar. Ein quantorenlogischer Satz soll wahr oder falsch sein (zeitunabhängig), insbesondere Sätze der Mathematik. Für einen Allsatz heißt dies, dass alle Gegenstände, über die quantifiziert wird, eine Eigenschaft haben. Für einen Existenzsatz heißt dies, dass es mindestens einen solchen Gegenstand in der Sorte der betrachteten Gegenstände gibt. Für beides muss der Bereich der betrachteten Gegenstände vorliegen.

In der modernen Formalen Semantik wird entsprechend ein Modell für eine Menge von Sätzen (eine Theorie) u.a. definiert durch die Domäne der Gegenstände, über die quantifiziert wird. Bezüglich dieser werden Variablenbelegungen definiert, die dann eine Rolle spielen in den Wahrheitsbedingungen quantifizierter Sätze, die schließlich wahr sind *relativ* zu dieser Domäne ($\forall x$: für alle Belegungen, $\exists x$: für mindestens eine Belegung von $,x^*$).

Soll eine Zahlentheorie also Theoreme bezüglich der natürlichen Zahlen aufstellen, wobei diese quantifizierte Form haben – als Eigenschaften aller natürlichen Zahlen (∀-Aussagen) oder als relative Existenzbehauptungen (∀∃-Aussagen) oder absolute Existenzbehauptungen (∃-Aussagen) – bedarf es somit einer Domäne natürlicher Zahlen, einer aktual unendlichen Domäne.

So betrachtet drückt (U) ,nur' aus, dass über Zahlen in ℕ geredet werden soll.

Wie in *Cantors Paradies* zu sehen, hört die Domäne allerdings nicht mit \mathbb{N} auf. Wir quantifizieren ebenfalls bezüglich von \mathbb{R} , also hier auch über *größere Domänen*. Vor allem: in Z sehen wir deutlich Quantoren *bezüglich aller Mengen* (etwa die Axiome wie (U))! Was ist hier die Domäne?

§4 Kritik des Prinzips der Domäne

Prinzip (D) lässt sich auf mindestens zwei Weisen kritisieren:

(i) Man kann zurückweisen, dass beliebige Quantifikationen wahrheitsdefinit sind. In einem gegebenen Bereich sind All- und Existenzaussagen wahr oder falsch. Es kann hingegen auch Fälle geben, bei denen kein abgeschlossener Bereich vorliegt (etwa bei der Quantifikation über alle Ereignisse inklusive der zukünftigen). In diesen Fällen handelt es sich bei den quantifizierenden Sätzen um *Prognosen*, die man als 'unwiderlegt' ansehen kann, aber nicht um wahrheitsdefinite Sätze (analog zu Sätzen über die Zukunft). Die Frage wäre also, ob es sinnvoll sein kann, einen (mathematischen) Bereich abstrakter Entitäten als ähnlich offen wie die Zukunft zu betrachten. Es handelt sich indessen um einen Bereich zeitloser Gegenstände.

(ii) Insofern man analytische Quantifikationen hat, ergeben sich die Wahrheitswerte nicht aus der Inspektion eines (unendlichen) Bereichs, sondern aus den Definitionen der entsprechenden Begriffe für Entitäten (wie Mengen oder Zahlen). Einige Axiome legen die Natur der Entitäten fest (etwa "Jede Zahl hat einen Nachfolger"). Insofern mathematische und logische Sätze analytisch sind, müssen sie sich so herleiten lassen. Empirisch-mathematische Sätze gibt es keine. Selbst wenn – aufgrund der Unvollständigkeitstheoreme – der Begriff der natürlichen Zahl in PA nicht komplett gefasst ist, handelt es sich bei den Lücken nicht um zusätzlich erworbenes kontingentes Wissen über Zahlen, bezüglich dessen man einen Individuenbereich inspizieren muss. Für die analytisch wahren mathematischen Sätze ist es sogar – zunächst – irrelevant, ob der Bereich endlich oder unendlich ist. Die Unendlichkeit tritt erst dann auf, wenn die Axiome sie fordern oder implizieren (im Rahmen i.d.R. einer konsistenten Logik).

Man kann sich allerdings die Kritik sparen, vertritt man einen mathematisch-logischen Fiktionalismus. Dann gibt es eine *Fiktion* – das Buch ZFC – in der ein unendlicher Bereich (als Quantifikationsdomäne) angenommen wird, aber daraus folgt wenig für die Wirklichkeit.

§5 Argumente für und wider (U)

Welche logischen und epistemologischen Gründe könnte es für (U) geben? (Theologische Fragen seien zunächst außen vor.) Dazu lassen sich eine Reihe von Argumenten abwägen.

1. Das *realistische Argument für (U)* besagt: Zahlen, wenn es sie denn gibt, sind geistesunabhängige Gegenstände. Gibt es eine, muss es alle geben. Sie werden nicht von uns – Schritt für Schritt – hergestellt!

Gegenargument: Ja, es muss alle geben, aber vielleicht sind es nicht unendlich viele. Und darum geht es hier.

Freges Argument besagt: Es gibt die Einermenge zu jedem Gegenstand. Es gibt also:
 x, {x], {{x}} usw. Also gibt es die unendliche Menge!

Gegenargument: Wieso muss es *immer* eine Einermenge geben? Man denke nur an die Einermenge der Gesamtheit aller Mengen, diese gibt es doch – z.B. in ZFC – nicht.

3. Ein *beschwichtigendes Argument* könnte so lauten: Wir nehmen 'nur' ℕ an, nicht einfach die Gesamtheit von *Cantors Paradies*.

Gegenargument: Wegen *Cantors Theorem* erhalten wir mit dieser Annahme, (U), den Aufstieg in *Cantors Paradies* über das Potenzmengenaxiom. Und die Annahme einer Potenzmenge scheint eine natürliche Annahme, natürlicher als (U).

4. Das *Ordinalzahlenargument* besagt: Haben wir den Begriff der Ordinalzahl (als Menge ihrer Vorgänger) können wir nie irgendwo stehen bleiben, denn mit einer Menge *a* lässt sich immer die Menge ihrer Elemente vereinigt mit {a} bilden: die Menge der Ordinalzahlen kann nicht endlich sein.

Gegenargument: Selbst wenn wir den Begriff der Ordinalzahl haben, droht hier sofort die Burali/Forte Antinomie der größten Ordinalzahl. Die Menge Ω der Ordinalzahlen kann es nicht geben, denn als Menge ließe sie sich überschreiten. Wo sind dann all die Ordinalzahlen? Cantor muss hier von "inkonsistenten Totalitäten" sprechen und sieht außerhalb der Theorie das "absolute Unendliche", das sich gerade nicht begreifen lässt! Die Idee des Nichtstehenbleibenkönnens scheint also in sich widersprüchlich oder instabil.

5. Das mathematische Argument besagt: Wie benötigen das aktual Unendliche für die Standard-Mathematik. Diese knüpft an an die Praxis der Mathematiker und der mathematisierten Wissenschaft. Diese sind als Teil der Wissenschaft und als Basis von Technik erfolgreich.

Gegenargument: Dass es eine bestehende Praxis gibt, schließt nicht aus, dass sie – auch in ihrem Selbstverständnis – reformbedürftig ist. Zum zweiten Teil: Es stellt sich die Frage nach der Unersetzbarkeit der Gegenwartsmathematik für die Wissenschaften – und insbesondere, ob die Annahmen bezüglich unendlicher Mengen für eine mutmaßliche Unersetzlichkeit verantwortlich sind.

6. Das Argument der Imprädikativität besagt: Potentielle Unendlichkeit steht in Konflikt nicht nur zur Extensionalität, da eine Menge zu verschiedenen Stadien der Entwicklung verschiedene Elemente hätte, sondern auch in Konflikt zu imprädikativen Definitionen in der Mengenlehre. Aussonderung ist oft imprädikativ. Prädikative Mengenlehren können nur mit beschränkten Quantoren arbeiten (auf den schon konstruierte Objekten).

Gegenargument: Dies sind keine Schwächen, sondern Tugenden. Es gibt ausgearbeitete prädikative und konstruktive Mengentheorien.

7. Das *begriffliche Argument* besagt: Bestimmte Begriffe lassen sich kategorisch nur durch Formeln der Prädikatenlogik Zweiter Stufe charakterisieren – interessanterweise auch der Begriff der Endlichkeit. Die Prädikatenlogik Zweiter Stufe nun ist nur eine verkleidete Mengenlehre aufgrund ihrer Prädikatquantoren.

Gegenargument: Das stimmt im Rahmen der Modelltheorie und ihres Verständnisses der Charakterisierung von Begriffen durch Formeln und Modelle. Ob dies indessen die beste Explikation von Begriffen ist, ist fraglich. Begriffe können wir haben und verstehen ohne Modelltheorie.

Die Idee des Zählens verknüpft sich zwar mit der des Nichtabbrechens. Dies ist jedoch der Begriff der potentiellen Unendlichkeit (als Ideal dieses Nichtabbrechens). Von dort gibt es keinen einfachen Übergang zum aktual Unendlichen – dies wäre das Ideal des *Abschlusses* des unendlichen Prozesses, ein ganz anderer Begriff bzw. der konstitutive Gebrauch der regulativen Idee des Nichtabbrechens.

Der Begriff des nicht-endlichen Prozesses, den wir per Negation bilden können (entsprechend 'das Nicht-Endliche', 'das Unendliche') verweisen von sich aus nicht auf das aktual Unendliche. D.h. hier kann man nicht einfach an unseren apriorischen Bestand von Begriffen appellieren. Dies gilt noch mehr für den Begriff des Nichtabzählbaren, da Nichtabzählbarkeit – per definitionem – jenseits der Prozesse des Zählbaren liegt, also insofern keine praktische Grundlage haben kann.